Skip to main content

Updates in Thyroid Cytology

  • Chapter
  • First Online:
Evidence-Based Endocrine Surgery
  • 643 Accesses

Abstract

The last decade has seen many positive changes in the practice of thyroid cytology, chief of which is the global move towards standardised classification systems for cytology reporting. This has formed the basis for a more evidence-based approach to the management of thyroid nodules stemming from a common language within the multidisciplinary team. One of the catalysts for this change has been the publication of the Bethesda System for Reporting Thyroid Cytology (TBSRTC), which spearheaded the worldwide move towards a more unified terminology. Following this, the literature has seen a proliferation of large-scale follow-up studies evaluating the usefulness of this classification system, in particular amongst the indeterminate diagnostic categories. We will discuss the main classification systems for thyroid cytology that are in practice and provide an overview of large-scale follow-up results as well as future directions for the updated Bethesda system.

Simultaneously, in recent years, there has been rapid progress in the understanding of molecular alterations in thyroid neoplasms. This has fuelled much interest in evaluating the role of preoperative molecular testing on cytologic material, particularly in triaging indeterminate nodules for surgical management. A discussion on the existing commercially available platforms, their feasibility and the overall role of molecular testing in thyroid cytologic material will be presented.

Lastly, in 2016, the newly coined term “non-invasive follicular thyroid neoplasm with papillary-like nuclear features” (NIFTP) resulted in an important paradigm shift amongst pathologists and clinicians and also caused some concern amongst patients. The diagnostic criteria and clinical rationale behind the new terminology will be discussed, as well as the implications on preoperative evaluation of potential NIFTPs when using TBSRTC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cibas ES, Ali SZ, NCI Thyroid FNA. State of the science conference. The Bethesda system for reporting thyroid cytopathology. Am J Clin Pathol. 2009;132(5):658–65.

    Article  Google Scholar 

  2. Pusztaszeri M, Rossi ED, Auger M, Baloch Z, Bishop J, Bongiovanni M, et al. The Bethesda system for reporting thyroid cytopathology: proposed modifications and updates for the second edition from an international panel. Acta Cytol. 2016;60(5):399–405.

    Article  Google Scholar 

  3. Ali SZ, Cibas E, editors. The Bethesda system for reporting thyroid cytopathology: definitions, criteria, and explanatory notes [Internet]. 2nd ed. New York: Springer; 2018. http://www.springer.com/gp/book/9783319605692. Accessed 18 Jun 2018.

    Google Scholar 

  4. Nikiforov YE, Seethala RR, Tallini G, Baloch ZW, Basolo F, Thompson LDR, et al. Nomenclature revision for encapsulated follicular variant of papillary thyroid carcinoma: a paradigm shift to reduce overtreatment of indolent tumors. JAMA Oncol. 2016;2(8):1023–9.

    Article  Google Scholar 

  5. Ali SZ, Cibas E, editors. The Bethesda system for reporting thyroid cytopathology: definitions, criteria and explanatory notes. 2010th ed. New York: Springer; 2010. p. 174.

    Google Scholar 

  6. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2015;26(1):1–133.

    Article  Google Scholar 

  7. Guidelines of the Papanicolaou Society of Cytopathology for the Examination of Fine-Needle Aspiration Specimens from Thyroid Nodules. The Papanicolaou Society of Cytopathology Task Force on Standards of Practice. Mod Pathol. 1996;9(6):710–5.

    Google Scholar 

  8. Guidance on the reporting of thyroid cytology specimens [Internet]. 2017. http://www.rcpath.org/resourceLibrary/g089-guidancereportingthyroidcytology-jan16.html. Accessed 8 Mar 2017.

  9. Lobo C, McQueen A, Beale T, Kocjan G. The UK Royal College of Pathologists thyroid fine-needle aspiration diagnostic classification is a robust tool for the clinical management of abnormal thyroid nodules. Acta Cytol. 2011;55(6):499–506.

    Article  Google Scholar 

  10. Kumarasinghe MP, Cummings MC, Raymond W, Shield P, Judge M, Beaty A, et al. Approach to thyroid cytology: rationale for standardisation. Pathology (Phila). 2015;47(4):285–8.

    CAS  Google Scholar 

  11. RCPA - Cancer Protocols [Internet]. 2017. http://www.rcpa.edu.au/Library/Practising-Pathology/Structured-Pathology-Reporting-of-Cancer/Cancer-Protocols. Accessed 8 Mar 2017.

  12. Padmanabhan V, Marshall CB, Akdas Barkan G, Ghofrani M, Laser A, Tolgay Ocal I, et al. Reproducibility of atypia of undetermined significance/follicular lesion of undetermined significance category using the Bethesda system for reporting thyroid cytology when reviewing slides from different institutions: a study of interobserver variability among cytopathologists. Diagn Cytopathol. 2017;45(5):399–405.

    Article  Google Scholar 

  13. Bongiovanni M, Spitale A, Faquin WC, Mazzucchelli L, Baloch ZW. The Bethesda system for reporting thyroid cytopathology: a meta-analysis. Acta Cytol. 2012;56(4):333–9.

    Article  Google Scholar 

  14. Gan TRX, Nga ME, Lum JHY, Wong WM, Tan WB, Parameswaran R, et al. Thyroid cytology-nuclear versus architectural atypia within the “Atypia of undetermined significance/follicular lesion of undetermined significance” Bethesda category have significantly different rates of malignancy. Cancer. 2017;125(4):245–56.

    Google Scholar 

  15. Ho AS, Sarti EE, Jain KS, Wang H, Nixon IJ, Shaha AR, et al. Malignancy rate in thyroid nodules classified as Bethesda category III (AUS/FLUS). Thyroid. 2014;24(5):832–9.

    Article  Google Scholar 

  16. Önder S, Firat P, Ates D. The Bethesda system for reporting thyroid cytopathology: an institutional experience of the outcome of indeterminate categories. Cytopathology. 2014;25(3):177–84.

    Article  Google Scholar 

  17. Straccia P, Rossi ED, Bizzarro T, Brunelli C, Cianfrini F, Damiani D, et al. A meta-analytic review of the Bethesda system for reporting thyroid cytopathology: has the rate of malignancy in indeterminate lesions been underestimated? Cancer Cytopathol. 2015;123(12):713–22.

    Article  Google Scholar 

  18. Ohori NP, Schoedel KE. Variability in the atypia of undetermined significance/follicular lesion of undetermined significance diagnosis in the Bethesda system for reporting thyroid cytopathology: sources and recommendations. Acta Cytol. 2011;55(6):492–8.

    Article  Google Scholar 

  19. Krane JF, Vanderlaan PA, Faquin WC, Renshaw AA. The atypia of undetermined significance/follicular lesion of undetermined significance: malignant ratio: a proposed performance measure for reporting in the Bethesda system for thyroid cytopathology. Cancer Cytopathol. 2012;120(2):111–6.

    Article  Google Scholar 

  20. Gocun PU, Karakus E, Bulutay P, Akturk M, Akin M, Poyraz A. What is the malignancy risk for atypia of undetermined significance? Three years’ experience at a university hospital in Turkey. Cancer Cytopathol. 2014;122(8):604–10.

    Article  Google Scholar 

  21. Dincer N, Balci S, Yazgan A, Guney G, Ersoy R, Cakir B, et al. Follow-up of atypia and follicular lesions of undetermined significance in thyroid fine needle aspiration cytology. Cytopathology. 2013;24(6):385–90.

    Article  CAS  Google Scholar 

  22. Yassa L, Cibas ES, Benson CB, Frates MC, Doubilet PM, Gawande AA, et al. Long-term assessment of a multidisciplinary approach to thyroid nodule diagnostic evaluation. Cancer. 2007;111(6):508–16.

    Article  Google Scholar 

  23. Rossi M, Lupo S, Rossi R, Franceschetti P, Trasforini G, Bruni S, et al. Proposal for a novel management of indeterminate thyroid nodules on the basis of cytopathological subclasses. Endocrine. 2017;57(1):98–107.

    Article  CAS  Google Scholar 

  24. Wu HH, Inman A, Cramer HM. Subclassification of “atypia of undetermined significance” in thyroid fine-needle aspirates. Diagn Cytopathol. 2014;42(1):23–9.

    Article  Google Scholar 

  25. VanderLaan PA, Marqusee E, Krane JF. Usefulness of diagnostic qualifiers for thyroid fine-needle aspirations with atypia of undetermined significance. Am J Clin Pathol. 2011;136(4):572–7.

    Article  Google Scholar 

  26. Kim SJ, Roh J, Baek JH, Hong SJ, Shong YK, Kim WB, et al. Risk of malignancy according to sub-classification of the atypia of undetermined significance or follicular lesion of undetermined significance (AUS/FLUS) category in the Bethesda system for reporting thyroid cytopathology. Cytopathology. 2017;28(1):65–73.

    Article  CAS  Google Scholar 

  27. Salvatore G, Giannini R, Faviana P, Caleo A, Migliaccio I, Fagin JA, et al. Analysis of BRAF point mutation and RET/PTC rearrangement refines the fine-needle aspiration diagnosis of papillary thyroid carcinoma. J Clin Endocrinol Metab. 2004;89(10):5175–80.

    Article  CAS  Google Scholar 

  28. Pusztaszeri MP, Krane JF, Faquin WC. BRAF testing and thyroid FNA. Cancer Cytopathol. 2015;123(12):689–95.

    Article  Google Scholar 

  29. Poller DN, Glaysher S. BRAF V600 co-testing is technically feasible in conventional thyroid fine needle aspiration (FNA) cytology smears and can reduce the need for completion thyroidectomy. Cytopathology. 2014;25(3):155–9.

    Article  CAS  Google Scholar 

  30. Nikiforov YE, Steward DL, Robinson-Smith TM, Haugen BR, Klopper JP, Zhu Z, et al. Molecular testing for mutations in improving the fine-needle aspiration diagnosis of thyroid nodules. J Clin Endocrinol Metab. 2009;94(6):2092–8.

    Article  CAS  Google Scholar 

  31. Nikiforov YE, Nikiforova MN. Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol. 2011;7(10):569–80.

    Article  CAS  Google Scholar 

  32. Nikiforov YE. Molecular diagnostics of thyroid tumors. Arch Pathol Lab Med. 2011;135(5):569–77.

    CAS  PubMed  Google Scholar 

  33. Nikiforov YE. Thyroid cancer in 2015: molecular landscape of thyroid cancer continues to be deciphered. Nat Rev Endocrinol. 2016;12(2):67–8.

    Article  CAS  Google Scholar 

  34. Mehta V, Nikiforov YE, Ferris RL. Use of molecular biomarkers in FNA specimens to personalize treatment for thyroid surgery. Head Neck. 2013;35(10):1499–506.

    PubMed  Google Scholar 

  35. Kwon H, Kim WG, Eszlinger M, Paschke R, Song DE, Kim M, et al. Molecular diagnosis using residual liquid-based cytology materials for patients with nondiagnostic or indeterminate thyroid nodules. Endocrinol Metab (Seoul Korea). 2016;31(4):586–91.

    Article  CAS  Google Scholar 

  36. Kloos RT. Molecular profiling of thyroid nodules: current role for the Afirma gene expression classifier on clinical decision making. Mol Imaging Radionucl Ther. 2016;26(Suppl 1):36–49.

    Google Scholar 

  37. Hsiao SJ, Nikiforov YE. Molecular approaches to thyroid cancer diagnosis. Endocr Relat Cancer. 2014;21(5):T301–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Nikiforova MN, Wald AI, Roy S, Durso MB, Nikiforov YE. Targeted next-generation sequencing panel (ThyroSeq) for detection of mutations in thyroid cancer. J Clin Endocrinol Metab. 2013;98(11):E1852–60.

    Article  CAS  Google Scholar 

  39. Nikiforov YE, Carty SE, Chiosea SI, Coyne C, Duvvuri U, Ferris RL, et al. Impact of the multi-gene ThyroSeq next-generation sequencing assay on cancer diagnosis in thyroid nodules with atypia of undetermined significance/follicular lesion of undetermined significance cytology. Thyroid. 2015;25(11):1217–23.

    Article  CAS  Google Scholar 

  40. Valderrabano P, Khazai L, Leon ME, Thompson ZJ, Ma Z, Chung CH, et al. Evaluation of ThyroSeq v2 performance in thyroid nodules with indeterminate cytology. Endocr Relat Cancer. 2017;24(3):127–36.

    Article  Google Scholar 

  41. Song YS, Lim JA, Park YJ. Mutation profile of well-differentiated thyroid Cancer in Asians. Endocrinol Metab (Seoul Korea). 2015;30(3):252–62.

    Article  CAS  Google Scholar 

  42. Nikiforova MN, Kimura ET, Gandhi M, Biddinger PW, Knauf JA, Basolo F, et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab. 2003;88(11):5399–404.

    Article  CAS  Google Scholar 

  43. Nikiforova MN, Nikiforov YE. Molecular diagnostics and predictors in thyroid cancer. Thyroid. 2009;19(12):1351–61.

    Article  CAS  Google Scholar 

  44. Ohori NP, Nikiforova MN, Schoedel KE, LeBeau SO, Hodak SP, Seethala RR, et al. Contribution of molecular testing to thyroid fine-needle aspiration cytology of “follicular lesion of undetermined significance/atypia of undetermined significance”. Cancer Cytopathol. 2010;118(1):17–23.

    Article  CAS  Google Scholar 

  45. Chung SY, Lee JS, Lee H, Park SH, Kim SJ, Ryu HS. Cytomorphological factors and BRAF mutation predicting risk of lymph node metastasis in preoperative liquid-based fine needle aspirations of papillary thyroid carcinoma. Acta Cytol. 2013;57(3):252–8.

    Article  CAS  Google Scholar 

  46. Koh J, Choi JR, Han KH, Kim E-K, Yoon JH, Moon HJ, et al. Proper indication of BRAF(V600E) mutation testing in fine-needle aspirates of thyroid nodules. PLoS One. 2013;8(5):e64505.

    Article  CAS  Google Scholar 

  47. Ilie MI, Lassalle S, Long-Mira E, Bonnetaud C, Bordone O, Lespinet V, et al. Diagnostic value of immunohistochemistry for the detection of the BRAF(V600E) mutation in papillary thyroid carcinoma: comparative analysis with three DNA-based assays. Thyroid. 2014;24(5):858–66.

    Article  CAS  Google Scholar 

  48. Jinih M, Foley N, Osho O, Houlihan L, Toor AA, Khan JZ, et al. BRAF(V600E) mutation as a predictor of thyroid malignancy in indeterminate nodules: a systematic review and meta-analysis. Eur J Surg Oncol. 2017;43(7):1219–27.

    Article  CAS  Google Scholar 

  49. Trimboli P, Treglia G, Condorelli E, Romanelli F, Crescenzi A, Bongiovanni M, et al. BRAF-mutated carcinomas among thyroid nodules with prior indeterminate FNA report: a systematic review and meta-analysis. Clin Endocrinol (Oxf). 2016;84(3):315–20.

    Article  CAS  Google Scholar 

  50. Su X, Jiang X, Xu X, Wang W, Teng X, Shao A, et al. Diagnostic value of BRAF (V600E)-mutation analysis in fine-needle aspiration of thyroid nodules: a meta-analysis. Onco Targets Ther. 2016;9:2495–509.

    Article  CAS  Google Scholar 

  51. Kleiman DA, Sporn MJ, Beninato T, Crowley MJ, Nguyen A, Uccelli A, et al. Preoperative BRAF(V600E) mutation screening is unlikely to alter initial surgical treatment of patients with indeterminate thyroid nodules: a prospective case series of 960 patients. Cancer. 2013;119(8):1495–502.

    Article  CAS  Google Scholar 

  52. Alexander EK, Kennedy GC, Baloch ZW, Cibas ES, Chudova D, Diggans J, et al. Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N Engl J Med. 2012;367(8):705–15.

    Article  CAS  Google Scholar 

  53. Nishino M. Molecular cytopathology for thyroid nodules: a review of methodology and test performance. Cancer Cytopathol. 2016;124(1):14–27.

    Article  Google Scholar 

  54. Alexander EK, Schorr M, Klopper J, Kim C, Sipos J, Nabhan F, et al. Multicenter clinical experience with the Afirma gene expression classifier. J Clin Endocrinol Metab. 2014;99(1):119–25.

    Article  CAS  Google Scholar 

  55. Harrell RM, Bimston DN. Surgical utility of Afirma: effects of high cancer prevalence and oncocytic cell types in patients with indeterminate thyroid cytology. Endocr Pract. 2014;20(4):364–9.

    Article  Google Scholar 

  56. Lastra RR, Pramick MR, Crammer CJ, LiVolsi VA, Baloch ZW. Implications of a suspicious Afirma test result in thyroid fine-needle aspiration cytology: an institutional experience. Cancer Cytopathol. 2014;122(10):737–44.

    Article  Google Scholar 

  57. McIver B, Castro MR, Morris JC, Bernet V, Smallridge R, Henry M, et al. An independent study of a gene expression classifier (Afirma) in the evaluation of cytologically indeterminate thyroid nodules. J Clin Endocrinol Metab. 2014;99(11):4069–77.

    Article  CAS  Google Scholar 

  58. Brauner E, Holmes BJ, Krane JF, Nishino M, Zurakowski D, Hennessey JV, et al. Performance of the Afirma gene expression classifier in Hürthle cell thyroid nodules differs from other indeterminate thyroid nodules. Thyroid. 2015;25(7):789–96.

    Article  Google Scholar 

  59. Marti JL, Avadhani V, Donatelli LA, Niyogi S, Wang B, Wong RJ, et al. Wide inter-institutional variation in performance of a molecular classifier for indeterminate thyroid nodules. Ann Surg Oncol. 2015;22(12):3996–4001.

    Article  Google Scholar 

  60. Nikiforov YE, Ohori NP, Hodak SP, Carty SE, LeBeau SO, Ferris RL, et al. Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: a prospective analysis of 1056 FNA samples. J Clin Endocrinol Metab. 2011;96(11):3390–7.

    Article  CAS  Google Scholar 

  61. Beaudenon-Huibregtse S, Alexander EK, Guttler RB, Hershman JM, Babu V, Blevins TC, et al. Centralized molecular testing for oncogenic gene mutations complements the local cytopathologic diagnosis of thyroid nodules. Thyroid. 2014;24(10):1479–87.

    Article  CAS  Google Scholar 

  62. Cantara S, Capezzone M, Marchisotta S, Capuano S, Busonero G, Toti P, et al. Impact of proto-oncogene mutation detection in cytological specimens from thyroid nodules improves the diagnostic accuracy of cytology. J Clin Endocrinol Metab. 2010;95(3):1365–9.

    Article  CAS  Google Scholar 

  63. Eszlinger M, Krogdahl A, Münz S, Rehfeld C, Precht Jensen EM, Ferraz C, et al. Impact of molecular screening for point mutations and rearrangements in routine air-dried fine-needle aspiration samples of thyroid nodules. Thyroid. 2014;24(2):305–13.

    Article  CAS  Google Scholar 

  64. Eszlinger M, Piana S, Moll A, Bösenberg E, Bisagni A, Ciarrocchi A, et al. Molecular testing of thyroid fine-needle aspirations improves presurgical diagnosis and supports the histologic identification of minimally invasive follicular thyroid carcinomas. Thyroid. 2015;25(4):401–9.

    Article  CAS  Google Scholar 

  65. Labourier E, Shifrin A, Busseniers AE, Lupo MA, Manganelli ML, Andruss B, et al. Molecular testing for miRNA, mRNA, and DNA on fine-needle aspiration improves the preoperative diagnosis of thyroid nodules with indeterminate cytology. J Clin Endocrinol Metab. 2015;100(7):2743–50.

    Article  CAS  Google Scholar 

  66. Krane JF, Cibas ES, Alexander EK, Paschke R, Eszlinger M. Molecular analysis of residual ThinPrep material from thyroid FNAs increases diagnostic sensitivity. Cancer Cytopathol. 2015;123(6):356–61.

    Article  CAS  Google Scholar 

  67. Nikiforov YE, Carty SE, Chiosea SI, Coyne C, Duvvuri U, Ferris RL, et al. Highly accurate diagnosis of cancer in thyroid nodules with follicular neoplasm/suspicious for a follicular neoplasm cytology by ThyroSeq v2 next-generation sequencing assay. Cancer. 2014;120(23):3627–34.

    Article  CAS  Google Scholar 

  68. Kolata G. It’s Not Cancer: Doctors Reclassify a Thyroid Tumor. The New York Times [Internet]. 2016. https://www.nytimes.com/2016/04/15/health/thyroid-tumor-cancer-reclassification.html. Accessed 3 Mar 2017.

  69. Thompson LD. Ninety-four cases of encapsulated follicular variant of papillary thyroid carcinoma: a name change to noninvasive follicular thyroid neoplasm with papillary-like nuclear features would help prevent overtreatment. Mod Pathol. 2016;29(7):698–707.

    Article  CAS  Google Scholar 

  70. Xu B, Tallini G, Scognamiglio T, Roman BR, Tuttle RM, Ghossein R. Outcome of large noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP). Thyroid. 2017;27(4):512–7.

    Article  CAS  Google Scholar 

  71. Strickland KC, Howitt BE, Marqusee E, Alexander EK, Cibas ES, Krane JF, et al. The impact of noninvasive follicular variant of papillary thyroid carcinoma on rates of malignancy for fine-needle aspiration diagnostic categories. Thyroid. 2015;25(9):987–92.

    Article  Google Scholar 

  72. Faquin WC, Wong LQ, Afrogheh AH, Ali SZ, Bishop JA, Bongiovanni M, et al. Impact of reclassifying noninvasive follicular variant of papillary thyroid carcinoma on the risk of malignancy in The Bethesda System for Reporting Thyroid Cytopathology. Cancer Cytopathol. 2016;124(3):181–7.

    Article  Google Scholar 

  73. Maletta F, Massa F, Torregrossa L, Duregon E, Casadei GP, Basolo F, et al. Cytological features of “noninvasive follicular thyroid neoplasm with papillary-like nuclear features” and their correlation with tumor histology. Hum Pathol. 2016;54:134–42.

    Article  CAS  Google Scholar 

  74. Hahn SY, Shin JH, Lim HK, Jung SL, Oh YL, Choi IH, et al. Preoperative differentiation between noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP) and non-NIFTP. Clin Endocrinol (Oxf). 2017;86(3):444–50.

    Article  CAS  Google Scholar 

  75. Krane JF, Alexander EK, Cibas ES, Barletta JA. Coming to terms with NIFTP: a provisional approach for cytologists. Cancer. 2016;124(11):767–72.

    Google Scholar 

  76. Baloch ZW, Seethala RR, Faquin WC, Papotti MG, Basolo F, Fadda G, et al. Noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP): a changing paradigm in thyroid surgical pathology and implications for thyroid cytopathology. Cancer Cytopathol. 2016;124(9):616–20.

    Article  Google Scholar 

  77. Jeon MJ, Song DE, Jung CK, Kim WG, Kwon H, Lee Y-M, et al. Impact of reclassification on thyroid nodules with architectural atypia: from non-invasive encapsulated follicular variant papillary thyroid carcinomas to non-invasive follicular thyroid neoplasm with papillary-like nuclear features. PLoS One. 2016;11(12):e0167756.

    Article  Google Scholar 

  78. Rosario PW, Mourão GF, Nunes MB, Nunes MS, Calsolari MR. Noninvasive follicular thyroid neoplasm with papillary-like nuclear features. Endocr Relat Cancer. 2016;23(12):893–7.

    Article  CAS  Google Scholar 

  79. Zhao L, Dias-Santagata D, Sadow PM, Faquin WC. Cytological, molecular, and clinical features of noninvasive follicular thyroid neoplasm with papillary-like nuclear features versus invasive forms of follicular variant of papillary thyroid carcinoma. Cancer. 2017;125(5):323–31.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min En Nga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media Singapore

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nga, M.E. (2018). Updates in Thyroid Cytology. In: Parameswaran, R., Agarwal, A. (eds) Evidence-Based Endocrine Surgery. Springer, Singapore. https://doi.org/10.1007/978-981-10-1124-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1124-5_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1123-8

  • Online ISBN: 978-981-10-1124-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics