Skip to main content

Genetic Landscape of Thyroid Cancer

  • Chapter
  • First Online:
Evidence-Based Endocrine Surgery
  • 607 Accesses

Abstract

Thyroid cancer incidence has been increasing over the past 40 years [1–4]. The histological and genetic profile distribution has been changing [3]. Majority of thyroid cancer are derived from thyroid follicular cells, consisting of papillary thyroid carcinoma (80%), follicular thyroid carcinoma (<10%), poorly differentiated thyroid carcinoma (7%), and anaplastic thyroid carcinoma (2%). The thyroid C cells form medullary thyroid carcinoma (3%) [1, 5, 6]. The utilisation of modern sequencing technique has enabled better correlation of clinico-pathological features with their genetic basis. The Cancer Genome Atlas (TCGA) genetic characterisation of papillary thyroid carcinoma had increased the proportion of known oncogenic drivers from 75 to 96.5% [7]. Even though the survival rate is usually high in most thyroid cancer patients, 60–70% fail to achieve complete remission (i.e. post-surgical incomplete or indeterminate treatment response) [8, 9]. About 25–50% of locally advanced or metastatic thyroid cancers become refractory to radioiodine therapy. This leads to a poorer outcome with 5-year survival of <50% and 10-year survival of <10% [10, 11]. The understanding of the genetic basis of these aggressive metastatic thyroid cancers is critical for personalised genotype-directed therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davies L, Welch H. Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA. 2006;295(18):2164–7.

    Article  CAS  PubMed  Google Scholar 

  2. Davies L, Welch H. Current thyroid cancer trends in the United States. JAMA Otolaryngol Head Neck Surg. 2014;140(4):317–22.

    Article  PubMed  Google Scholar 

  3. Jung CK, et al. The increase in thyroid cancer incidence during the last four decades is accompanied by a high frequency of BRAF mutations and a sharp increase in RAS mutations. J Clin Endocrinol Metab. 2014;99(2):E276–85.

    Article  CAS  PubMed  Google Scholar 

  4. National Registry of Diseases Office (NRDO). Singapore Cancer Registry Interim Annual Report. Trends in Cancer Incidence in Singapore 20102014. 2015

    Google Scholar 

  5. World Health Organization (WHO) Classification. PathologyOutlines.com website. http://www.pathologyoutlines.com/topic/thyroidwho.html. Accessed 10 Sept 2017.

  6. Kondo T, Ezzat S, Asa SL. Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer. 2006;6(4):292–306.

    Article  CAS  PubMed  Google Scholar 

  7. Network CGAR. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159(3):676–90.

    Article  Google Scholar 

  8. Vaisman F, et al. Spontaneous remission in thyroid cancer patients after biochemical incomplete response to initial therapy. Clin Endocrinol. 2012;77(1):132–8.

    Article  CAS  Google Scholar 

  9. Tuttle RM, et al. Estimating risk of recurrence in differentiated thyroid cancer after total thyroidectomy and radioactive iodine remnant ablation: using response to therapy variables to modify the initial risk estimates predicted by the new American Thyroid Association staging system. Thyroid. 2010;20(12):1341–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Martin S, et al. Long-term results of treatment of 283 patients with lung and bone metastases from differentiated thyroid carcinoma. J Clin Endocrinol Metabol. 1986;63(4):960–7.

    Article  Google Scholar 

  11. Durante C, et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metabol. 2006;91(8):2892–9.

    Article  CAS  Google Scholar 

  12. Bischoff L, et al. Is above age 45 appropriate for upstaging well-differentiated papillary thyroid cancer? Endocr Pract. 2013;19(6):995–7.

    Article  PubMed  Google Scholar 

  13. Kimura ET, et al. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 2003;63(7):1454–7.

    CAS  PubMed  Google Scholar 

  14. Cohen Y, et al. BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst. 2003;95(8):625–7.

    Article  CAS  PubMed  Google Scholar 

  15. Chai L, Li J, Lv Z. An integrated analysis of cancer genes in thyroid cancer. Oncol Rep. 2016;35(2):962–70.

    Article  CAS  PubMed  Google Scholar 

  16. Yu C, et al. Molecular network including eIF1AX, RPS7, and 14-3-3γ regulates protein translation and cell proliferation in bovine mammary epithelial cells. Arch Biochem Biophys. 2014;564:142–55.

    Article  CAS  PubMed  Google Scholar 

  17. Karunamurthy A, et al. Prevalence and phenotypic correlations of EIF1AX mutations in thyroid nodules. Endocr Relat Cancer. 2016;23(4):295–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Oliva-Trastoy M, et al. The Wip1 phosphatase (PPM1D) antagonizes activation of the Chk2 tumour suppressor kinase. Oncogene. 2007;26(10):1449–58.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang L, et al. Exome sequencing identifies somatic gain-of-function PPM1D mutations in brainstem gliomas. Nat Genet. 2014;46(7):726–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Landa I, et al. Frequent somatic TERT promoter mutations in thyroid cancer: higher prevalence in advanced forms of the disease. J Clin Endocrinol Metabol. 2013;98(9):E1562–6.

    Article  CAS  Google Scholar 

  21. Melo M, et al. TERT promoter mutations are a major indicator of poor outcome in differentiated thyroid carcinomas. J Clin Endocrinol Metabol. 2014;99(5):E754–65.

    Article  CAS  Google Scholar 

  22. Liu X, et al. TERT promoter mutations and their association with BRAF V600E mutation and aggressive clinicopathological characteristics of thyroid cancer. J Clin Endocrinol Metabol. 2014;99(6):E1130–6.

    Article  CAS  Google Scholar 

  23. Fu D, Collins K. Purification of human telomerase complexes identifies factors involved in telomerase biogenesis and telomere length regulation. Mol Cell. 2007;28(5):773–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. De Lange T. Telomere-related genome instability in cancer. Cold Spring Harb Symp Quant Biol. 2005;70:197–204.

    Article  PubMed  Google Scholar 

  25. Akincilar SC, Unal B, Tergaonkar V. Reactivation of telomerase in cancer. Cell Mol Life Sci. 2016;73(8):1659–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bell RJ, et al. The transcription factor GABP selectively binds and activates the mutant TERT promoter in cancer. Science. 2015;348(6238):1036–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu B, Ghossein R. Genomic landscape of poorly differentiated and anaplastic thyroid carcinoma. Endocr Pathol. 2016;27(3):205–12.

    Article  CAS  PubMed  Google Scholar 

  28. Ricarte-Filho JC, et al. Identification of kinase fusion oncogenes in post-Chernobyl radiation-induced thyroid cancers. J Clin Invest. 2013;123(11):4935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kjellman P, et al. Gain of 1q and loss of 9q21. 3-q32 are associated with a less favorable prognosis in papillary thyroid carcinoma. Genes Chromosomes Cancer. 2001;32(1):43–9.

    Article  CAS  PubMed  Google Scholar 

  30. Wreesmann VB, et al. Genome-wide profiling of papillary thyroid cancer identifies MUC1 as an independent prognostic marker. Cancer Res. 2004;64(11):3780–9.

    Article  CAS  PubMed  Google Scholar 

  31. Durante C, et al. BRAF mutations in papillary thyroid carcinomas inhibit genes involved in iodine metabolism. J Clin Endocrinol Metabol. 2007;92(7):2840–3.

    Article  CAS  Google Scholar 

  32. Franco AT, et al. Thyrotrophin receptor signaling dependence of Braf-induced thyroid tumor initiation in mice. Proc Natl Acad Sci. 2011;108(4):1615–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Charles R-P, et al. Mutationally activated BRAFV600E elicits papillary thyroid cancer in the adult mouse. Cancer Res. 2011;71(11):3863–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Park JY, et al. BRAF and RAS mutations in follicular variants of papillary thyroid carcinoma. Endocr Pathol. 2013;24(2):69–76.

    Article  CAS  PubMed  Google Scholar 

  35. Rivera M, et al. Molecular genotyping of papillary thyroid carcinoma follicular variant according to its histological subtypes (encapsulated vs infiltrative) reveals distinct BRAF and RAS mutation patterns. Mod Pathol. 2010;23(9):1191–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xing M, et al. Association between BRAF v600e mutation and mortality in patients with papillary thyroid cancer. JAMA. 2013;309(14):1493–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sabra M, et al. Clinical outcomes and molecular profile of differentiated thyroid cancers with radioiodine-avid distant metastases. J Clin Endocrinol Metabol. 2013;98(5):E829–36.

    Article  CAS  Google Scholar 

  38. Chakravarty D, et al. Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation. J Clin Invest. 2011;121(12):4700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jung S-H, et al. Mutational burdens and evolutionary ages of thyroid follicular adenoma are comparable to those of follicular carcinoma. Oncotarget. 2016;7(43):69638.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Nikiforova MN, et al. RAS point mutations and PAX8-PPARγ rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metabol. 2003;88(5):2318–26.

    Article  CAS  Google Scholar 

  41. Nikiforov YE. Thyroid carcinoma: molecular pathways and therapeutic targets. Mod Pathol. 2008;21(Suppl 2):S37–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Campbell SL, et al. Increasing complexity of Ras signaling. Oncogene. 1998;17(11):1395–413.

    Article  CAS  PubMed  Google Scholar 

  43. Kakarmath S, et al. Clinical, sonographic, and pathological characteristics of RAS-positive versus BRAF-positive thyroid carcinoma. J Clin Endocrinol Metabol. 2016;101(12):4938–44.

    Article  CAS  Google Scholar 

  44. Jeong SH, et al. Analysis of RAS mutation and PAX8/PPARγ rearrangements in follicular-derived thyroid neoplasms in a Korean population: frequency and ultrasound findings. J Endocrinol Investig. 2015;38(8):849–57.

    Article  CAS  Google Scholar 

  45. Mochizuki K, et al. Low frequency of PAX8-PPARγ rearrangement in follicular thyroid carcinomas in Japanese patients. Pathol Int. 2015;65(5):250–3.

    Article  CAS  PubMed  Google Scholar 

  46. Nikiforova MN, et al. PAX8-PPARγ rearrangement in thyroid tumors: RT-PCR and immunohistochemical analyses. Am J Surg Pathol. 2002;26(8):1016–23.

    Article  PubMed  Google Scholar 

  47. Kroll TG, et al. PAX8-PPARgamma 1 fusion oncogene in human thyroid carcinoma. Science. 2000;289(5483):1357–60.

    Article  CAS  PubMed  Google Scholar 

  48. Park J-W, et al. Troglitazone, the peroxisome proliferator-activated receptor-γ agonist, induces antiproliferation and redifferentiation in human thyroid cancer cell lines. Thyroid. 2005;15(3):222–31.

    Article  CAS  PubMed  Google Scholar 

  49. Kato Y, et al. PPAR[gamma] insufficiency promotes follicular thyroid carcinogenesis via activation of the nuclear factor-[kappa]B signaling pathway. Oncogene. 2005;25(19):2736–47.

    Article  Google Scholar 

  50. Marques AR, et al. Expression of PAX8-PPARγ1 rearrangements in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metabol. 2002;87(8):3947–52.

    CAS  Google Scholar 

  51. Vasko V, et al. Specific pattern of RAS oncogene mutations in follicular thyroid tumors. J Clin Endocrinol Metab. 2003;88(6):2745–52.

    Article  CAS  PubMed  Google Scholar 

  52. Gupta N, et al. RAS mutations in thyroid FNA specimens are highly predictive of predominantly low-risk follicular-pattern cancers. J Clin Endocrinol Metabol. 2013;98(5):E914–22.

    Article  Google Scholar 

  53. Burns JS, et al. Stepwise transformation of primary thyroid epithelial cells by a mutant Ha-ras oncogene: an in vitro model of tumor progression. Mol Carcinog. 1992;6(2):129–39.

    Article  CAS  PubMed  Google Scholar 

  54. Yoo S-K, et al. Comprehensive analysis of the transcriptional and mutational landscape of follicular and papillary thyroid cancers. PLoS Genet. 2016;12(8):e1006239.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Swierniak M, et al. Somatic mutation profiling of follicular thyroid cancer by next generation sequencing. Mol Cell Endocrinol. 2016;433:130–7.

    Article  CAS  PubMed  Google Scholar 

  56. Montone KT, Baloch ZW, LiVolsi VA. The thyroid Hürthle (oncocytic) cell and its associated pathologic conditions: a surgical pathology and cytopathology review. Arch Pathol Lab Med. 2008;132(8):1241–50.

    PubMed  Google Scholar 

  57. Máximo V, et al. Mitochondrial DNA somatic mutations (point mutations and large deletions) and mitochondrial DNA variants in human thyroid pathology: a study with emphasis on Hürthle cell tumors. Am J Pathol. 2002;160(5):1857–65.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Peng T-I, et al. Visualizing common deletion of mitochondrial DNA-augmented mitochondrial reactive oxygen species generation and apoptosis upon oxidative stress. Biochim Biophys Acta. 2006;1762(2):241–55.

    Article  CAS  PubMed  Google Scholar 

  59. Ganly I, et al. Genomic dissection of Hurthle cell carcinoma reveals a unique class of thyroid malignancy. J Clin Endocrinol Metabol. 2013;98(5):E962–72.

    Article  Google Scholar 

  60. Topf MC, et al. EIF1AX mutation in a patient with Hürthle cell carcinoma. Endocr Pathol. 2018;29:27–9.

    Article  CAS  PubMed  Google Scholar 

  61. Covach A, et al. Phosphorylated mechanistic target of rapamycin (p-mTOR) and noncoding RNA expression in follicular and Hurthle cell thyroid neoplasm. Endocr Pathol. 2017;28:207–12.

    Article  CAS  PubMed  Google Scholar 

  62. Kebebew E, et al. Anaplastic thyroid carcinoma. Cancer. 2005;103(7):1330–5.

    Article  PubMed  Google Scholar 

  63. Carcangiu ML, Zamp G, Rosai J. Poorly differentiated (“insular”) thyroid carcinoma: a reinterpretation of Langhans’ “wuchernde Struma”. Am J Surg Pathol. 1984;8(9):655–68.

    Article  CAS  PubMed  Google Scholar 

  64. Hiltzik D, et al. Poorly differentiated thyroid carcinomas defined on the basis of mitosis and necrosis. Cancer. 2006;106(6):1286–95.

    Article  PubMed  Google Scholar 

  65. Volante M, et al. Poorly differentiated thyroid carcinoma: the Turin proposal for the use of uniform diagnostic criteria and an algorithmic diagnostic approach. Am J Surg Pathol. 2007;31(8):1256–64.

    Article  PubMed  Google Scholar 

  66. Landa I, et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest. 2016;126(3):1052–66.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kunstman JW, et al. Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome sequencing. Hum Mol Genet. 2015;24(8):2318–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sykorova V, et al. Search for new genetic biomarkers in poorly differentiated and anaplastic thyroid carcinomas using next generation sequencing. Anticancer Res. 2015;35(4):2029–36.

    CAS  PubMed  Google Scholar 

  69. Pita JM, et al. Cell cycle deregulation and TP53 and RAS mutations are major events in poorly differentiated and undifferentiated thyroid carcinomas. J Clin Endocrinol Metabol. 2014;99(3):E497–507.

    Article  CAS  Google Scholar 

  70. Jeon MJ, et al. Genomic alterations of anaplastic thyroid carcinoma detected by targeted massive parallel sequencing in a BRAFV600E mutation-prevalent area. Thyroid. 2016;26(5):683–90.

    Article  CAS  PubMed  Google Scholar 

  71. Latteyer S, et al. Targeted next-generation sequencing for TP53, RAS, BRAF, ALK and NF1 mutations in anaplastic thyroid cancer. Endocrine. 2016;54(3):733–41.

    Article  CAS  PubMed  Google Scholar 

  72. Ricarte-Filho JC, et al. Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res. 2009;69(11):4885–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Volante M, et al. RAS mutations are the predominant molecular alteration in poorly differentiated thyroid carcinomas and bear prognostic impact. J Clin Endocrinol Metabol. 2009;94(12):4735–41.

    Article  CAS  Google Scholar 

  74. Liu X, et al. Highly prevalent TERT promoter mutations in aggressive thyroid cancers. Endocr Relat Cancer. 2013;20(4):603–10.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Fagin JA, et al. High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. J Clin Investig. 1993;91(1):179–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ito T, et al. Unique association of p53 mutations with undifferentiated but not with differentiated carcinomas of the thyroid gland. Cancer Res. 1992;52(5):1369–71.

    CAS  PubMed  Google Scholar 

  77. Cremona CA, Behrens A. ATM signalling and cancer. Oncogene. 2014;33(26):3351–60.

    Article  CAS  PubMed  Google Scholar 

  78. Garcia-Rendueles ME, et al. NF2 loss promotes oncogenic RAS-induced thyroid cancers via YAP-dependent transactivation of RAS proteins and sensitizes them to MEK inhibition. Cancer Discov. 2015;5(11):1178–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Petrilli AM, Fernández-Valle C. Role of Merlin/NF2 inactivation in tumor biology. Oncogene. 2016;35(5):537–48.

    Article  CAS  PubMed  Google Scholar 

  80. Kelly LM, et al. Identification of the transforming STRN-ALK fusion as a potential therapeutic target in the aggressive forms of thyroid cancer. Proc Natl Acad Sci U S A. 2014;111(11):4233–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Murugan AK, Xing M. Anaplastic thyroid cancers harbor novel oncogenic mutations of the ALK gene. Cancer Res. 2011;71(13):4403–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Godbert Y, et al. Remarkable response to crizotinib in woman with anaplastic lymphoma kinase–rearranged anaplastic thyroid carcinoma. J Clin Oncol. 2014;33(20):e84–7.

    Article  PubMed  Google Scholar 

  83. Helming KC, Wang X, Roberts CW. Vulnerabilities of mutant SWI/SNF complexes in cancer. Cancer Cell. 2014;26(3):309–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Miller JR, et al. Mechanism and function of signal transduction by the Wnt/beta-catenin and Wnt/Ca2+ pathways. Oncogene. 1999;18(55):7860–72.

    Article  CAS  PubMed  Google Scholar 

  85. Garcia-Rostan G, et al. β-catenin dysregulation in thyroid neoplasms: down-regulation, aberrant nuclear expression, and CTNNB1 exon 3 mutations are markers for aggressive tumor phenotypes and poor prognosis. Am J Pathol. 2001;158(3):987–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Garcia-Rostan G, et al. Frequent mutation and nuclear localization of β-catenin in anaplastic thyroid carcinoma. Cancer Res. 1999;59(8):1811–5.

    CAS  PubMed  Google Scholar 

  87. Kurihara T, et al. Immunohistochemical and sequencing analyses of the Wnt signaling components in Japanese anaplastic thyroid cancers. Thyroid. 2004;14(12):1020–9.

    Article  CAS  PubMed  Google Scholar 

  88. Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer. 2007;7(6):415.

    Article  CAS  PubMed  Google Scholar 

  89. Moura MM, Cavaco BM, Leite V. RAS proto-oncogene in medullary thyroid carcinoma. Endocr Relat Cancer. 2015;22(5):R235–52.

    Article  CAS  PubMed  Google Scholar 

  90. Agrawal N, et al. Exomic sequencing of medullary thyroid cancer reveals dominant and mutually exclusive oncogenic mutations in RET and RAS. J Clin Endocrinol Metabol. 2012;98(2):E364–9.

    Article  Google Scholar 

  91. Kloos RT, et al. Medullary thyroid cancer: management guidelines of the American Thyroid Association. Thyroid. 2009;19(6):565–612.

    Article  PubMed  Google Scholar 

  92. Moura M, et al. Correlation of RET somatic mutations with clinicopathological features in sporadic medullary thyroid carcinomas. Br J Cancer. 2009;100(11):1777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gallel P, et al. Nuclear factor–κB activation is associated with somatic and germ line RET mutations in medullary thyroid carcinoma. Hum Pathol. 2008;39(7):994–1001.

    Article  CAS  PubMed  Google Scholar 

  94. Moura MM, et al. High prevalence of RAS mutations in RET-negative sporadic medullary thyroid carcinomas. J Clin Endocrinol Metabol. 2011;96(5):E863–8.

    Article  CAS  Google Scholar 

  95. Pennelli G, et al. The PDCD4/miR-21 pathway in medullary thyroid carcinoma. Hum Pathol. 2015;46(1):50–7.

    Article  CAS  PubMed  Google Scholar 

  96. Palamarchuk A, et al. Akt phosphorylates and regulates Pdcd4 tumor suppressor protein. Cancer Res. 2005;65(24):11282–6.

    Article  CAS  PubMed  Google Scholar 

  97. Coster G, Goldberg M. The cellular response to DNA damage: a focus on MDC1 and its interacting proteins. Nucleus. 2010;1(2):166–78.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samantha Peiling Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media Singapore

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Peiling Yang, S. (2018). Genetic Landscape of Thyroid Cancer. In: Parameswaran, R., Agarwal, A. (eds) Evidence-Based Endocrine Surgery. Springer, Singapore. https://doi.org/10.1007/978-981-10-1124-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1124-5_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1123-8

  • Online ISBN: 978-981-10-1124-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics