Skip to main content

Laser Beam Machining, Laser Beam Hybrid Machining, and Micro-channels Applications and Fabrication Techniques

  • Chapter
  • First Online:
Machining, Joining and Modifications of Advanced Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 61))

Abstract

Laser beam machining (LBM) has proven its applications and advantages over almost all the range of engineering materials. It offers its competences from macro machining to micro and nano-machining of simple-to-complex shapes. The flipside of LBM is the existence of universal problems associated with its thermal ablation mechanism. In order to alleviate or reduce the inherent problems of LBM, a massive research has been done during the past decade and in turn build a relatively new route of laser-hybrid processes. The hybrid approaches in laser ablation have demonstrated much improved results in terms of material removal rate, surface integrity, geometrical tolerances, thermal damage, metallurgical alterations and many more. This chapter reviews the research work carried out so far in the area of LBM and its hybrid processes for different materials and shapes. The literature assessment is mainly classified into seven categories named as: (1) Introduction, (2) Laser Beam Machining (LBM), (3) Laser Assisted Machining (LAM), (4) Laser Chemical Machining/Etching (LCM/E), (5) Laser Assisted Electrochemical Machining (LAECM) and (6) Under-Water Laser Ablation (UWLA) and (7) Micro-channel Applications and Fabrication Techniques. The last part of this chapter discusses the research gaps and future research directions in the context of laser and laser-hybrid ablation.

The original version of this chapter was revised: The chapter author missed to add the funding in Chapter-17. The erratum to this chapter is available at 10.1007/978-981-10-1082-8_18

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-981-10-1082-8_18

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dubey, A.K., Yadava, V.: Laser beam machining—a review. Int. J. Mach. Tools Manuf. 48(6), 609–628 (2008)

    Article  Google Scholar 

  2. Yilbas, B.S.: 9.02—Laser heating and the phase change process. In: Hashmi, S., Batalha, G.F., Tyne, C.J.V., Yilbas, B. (eds.) Comprehensive Materials Processing, pp. 5–24. Elsevier, Oxford (2014)

    Google Scholar 

  3. Willis, D.A., Xu, X.: Heat transfer and phase change during picosecond laser ablation of nickel. Int. J. Heat Mass Transf. 45(19), 3911–3918 (2002)

    Article  Google Scholar 

  4. Chryssolouris, G., Anifantis, N., Karagiannis, S.: Laser assisted machining: an overview. J. Manuf. Sci. Eng. 119(4B), 766–769 (1997)

    Article  Google Scholar 

  5. Nakashima, S., Sugioka, K., Midorikawa, K.: Fabrication of microchannels in single-crystal GaN by wet-chemical-assisted femtosecond-laser ablation. Appl. Surf. Sci. 255(24), 9770–9774 (2009)

    Article  Google Scholar 

  6. Dong, C., Gu, Y., Zhong, M., Li, L., Sezer, K., Ma, M., Liu, W.: Fabrication of superhydrophobic Cu surfaces with tunable regular micro and random nano-scale structures by hybrid laser texture and chemical etching. J. Mater. Process. Technol. 211(7), 1234–1240 (2011)

    Article  Google Scholar 

  7. Nowak, R., Metev, S.: Thermochemical laser etching of stainless steel and titanium in liquids. Appl. Phys. A 63(2), 133–138 (1996)

    Article  Google Scholar 

  8. Park, J.-K., Yoon, J.-W., Cho, S.-H.: Vibration assisted femtosecond laser machining on metal. Opt. Lasers Eng. 50(6), 833–837 (2012)

    Article  Google Scholar 

  9. Park, J.-K., Yoon, J.-W., Kang, M.-C., Cho, S.-H.: Surface effects of hybrid vibration-assisted femtosecond laser system for micro-hole drilling of copper substrate. Trans. Nonferrous Met. Soc. China 22(Supplement 3), s801–s807 (2012)

    Article  Google Scholar 

  10. Li, L., Diver, C., Atkinson, J., Giedl-Wagner, R., Helml, H.J.: Sequential laser and EDM micro-drilling for next generation fuel injection nozzle manufacture. CIRP Ann. Manuf. Technol. 55(1), 179–182 (2006)

    Article  Google Scholar 

  11. Lu, J., Xu, R.Q., Chen, X., Shen, Z.H., Ni, X.W., Zhang, S.Y., Gao, C.M.: Mechanisms of laser drilling of metal plates underwater. J. Appl. Phys. 95(8), 3890–3894 (2004)

    Article  Google Scholar 

  12. O’Malley, S.M., Amin, M., Borchert, J., Jimenez, R., Steiner, M., Fitz-Gerald, J.M., Bubb, D.M.: Formation of rubrene nanocrystals by laser ablation in liquids utilizing MAPLE deposited thin films. Chem. Phys. Lett. 595–596, 171–174 (2014)

    Article  Google Scholar 

  13. Taniguchi, N.: Current status in, and future trends of, ultraprecision machining and ultrafine materials processing. CIRP Ann. Manuf. Technol. 32(2), 573–582 (1983)

    Article  Google Scholar 

  14. Meijer, J., Du, K., Gillner, A., Hoffmann, D., Kovalenko, V.S., Masuzawa, T., Ostendorf, A., Poprawe, R., Schulz, W.: Laser machining by short and ultrashort pulses, state of the art and new opportunities in the age of the photons. CIRP Ann. Manuf. Technol. 51(2), 531–550 (2002)

    Article  Google Scholar 

  15. Meijer, J.: Laser beam machining (LBM), state of the art and new opportunities. J. Mater. Process. Technol. 149(1–3), 2–17 (2004)

    Article  Google Scholar 

  16. Chen, X., Liu, X.: Short pulsed laser machining: how short is short enough? J. Laser Appl. 11(6), 268–272 (1999)

    Article  Google Scholar 

  17. Ready, J.F.: Fundamentals of lasers (Chapter 1). In: Ready, J.F. (ed.) Industrial Applications of Lasers, 2nd edn, pp. 1–30. Academic Press, San Diego (1997)

    Chapter  Google Scholar 

  18. Samant, A.N., Dahotre, N.B.: Three-dimensional laser machining of structural ceramics. J. Manuf. Process. 12(1), 1–7 (2010)

    Article  Google Scholar 

  19. Meijer, J.: Laser beam machining (LBM), state of the art and new opportunities. J. Mater. Process. Technol. 149(1–3), 2–17 (2004)

    Article  Google Scholar 

  20. Pham, D.T., Dimov, S.S., Petkov, P.V.: Laser milling of ceramic components. Int. J. Mach. Tools Manuf. 47(3–4), 618–626 (2007)

    Article  Google Scholar 

  21. Bäuerle, D.: Laser Processing and Chemistry. Springer, Heidelberg (2011)

    Book  Google Scholar 

  22. Vogel, A., Noack, J., Nahen, K., Theisen, D., Busch, S., Parlitz, U., Hammer, D.X., Noojin, G.D., Rockwell, B.A., Birngruber, R.: Energy balance of optical breakdown in water at nanosecond to femtosecond time scales. Appl. Phys. B 68(2), 271–280 (2014)

    Article  Google Scholar 

  23. Liu, X., Du, D., Mourou, G.: Laser ablation and micromachining with ultrashort laser pulses. IEEE J. Quantum Electron. 33(10), 1706–1716 (1997)

    Article  Google Scholar 

  24. Sola, D., Peña, J.I.: Laser machining of Al2O3–ZrO2 (3 %Y2O3) eutectic composite. J. Eur. Ceram. Soc. 32(4), 807–814 (2012)

    Article  Google Scholar 

  25. Cejnar, M., Kobler, H., Hunyor, S.N.: Quantitative photoplethysmography: Lambert-Beer law or inverse function incorporating light scatter. J. Biomed. Eng. 15(2), 151–154 (1993)

    Article  Google Scholar 

  26. Weber, R., Hafner, M., Michalowski, A., Graf, T.: Minimum damage in CFRP laser processing. Phys. Procedia 12(Part B), 302–307 (2011)

    Google Scholar 

  27. Yilbas, B.S., Shuja, S.Z., Arif, A., Gondal, M.A.: Laser-shock processing of steel. J. Mater. Process. Technol. 135(1), 6–17 (2003)

    Article  Google Scholar 

  28. Zweig, A.D., Deutsch, T.F.: Shock waves generated by confined XeCl excimer laser ablation of polyimide. Appl. Phys. B 54(1), 76–82 (1992)

    Article  Google Scholar 

  29. Mishra, S., Yadava, V.: Modeling and optimization of laser beam percussion drilling of nickel-based superalloy sheet using Nd:YAG laser. Opt. Lasers Eng. 51(6), 681–695 (2013)

    Article  Google Scholar 

  30. Yue, L., Wang, Z., Li, L.: Material morphological characteristics in laser ablation of alpha case from titanium alloy. Appl. Surf. Sci. 258(20), 8065–8071 (2012)

    Article  Google Scholar 

  31. Milovanović, D.S., Petrović, S.M., Shulepov, M.A., Tarasenko, V.F., Radak, B.B., Miljanić, Š.S., Trtica, M.S.: Titanium alloy surface modification by excimer laser irradiation. Opt. Laser Technol. 54, 419–427 (2013)

    Article  Google Scholar 

  32. Cheng, J., Perrie, W., Wu, B., Tao, S., Edwardson, S.P., Dearden, G., Watkins, K.G.: Ablation mechanism study on metallic materials with a 10 ps laser under high fluence. Appl. Surf. Sci. 255(18), 8171–8175 (2009)

    Article  Google Scholar 

  33. Le Harzic, R., Breitling, D., Weikert, M., Sommer, S., Föhl, C., Valette, S., Donnet, C., Audouard, E., Dausinger, F.: Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps. Appl. Surf. Sci. 249(1–4), 322–331 (2005)

    Article  Google Scholar 

  34. Khosroshahi, M.E., Mahmoodi, M., Tavakoli, J.: Characterization of Ti6Al4V implant surface treated by Nd:YAG laser and emery paper for orthopaedic applications. Appl. Surf. Sci. 253(21), 8772–8781 (2007)

    Article  Google Scholar 

  35. Cunha, A., Serro, A.P., Oliveira, V., Almeida, A., Vilar, R., Durrieu, M.-C.: Wetting behaviour of femtosecond laser textured Ti–6Al–4V surfaces. Appl. Surf. Sci. 265, 688–696 (2013)

    Article  Google Scholar 

  36. Balla, V.K., Soderlind, J., Bose, S., Bandyopadhyay, A.: Microstructure, mechanical and wear properties of laser surface melted Ti6Al4V alloy. J. Mech. Behav. Biomed. Mater. 32, 335-344 (2014)

    Google Scholar 

  37. Amaya-Vazquez, M.R., Sánchez-Amaya, J.M., Boukha, Z., Botana, F.J.: Microstructure, microhardness and corrosion resistance of remelted TiG2 and Ti6Al4V by a high power diode laser. Corros. Sci. 56, 36–48 (2012)

    Article  Google Scholar 

  38. Al-ahmari, A., Saied, D., Naveed, A.: Laser beam micro-milling (LBMM) of selected aerospace alloys. Int. J. Adv. Manuf. Technol. (2016, Jan)

    Google Scholar 

  39. Ahmed, N., Darwish, S., Alahmari, A.M., Shar, M.A.: Micro-channels by Nd:YAG laser beam machining: fabrication, microstructures, and micro-hardness profiles. Int. J. Adv. Manuf. Technol. 1–14 (2015, May)

    Google Scholar 

  40. Ahn, D.-G., Byun, K.-W.: Influence of cutting parameters on surface characteristics of cut section in cutting of Inconel 718 sheet using CW Nd:YAG laser. Trans. Nonferrous Met. Soc. China 19(Supplement 1), s32–s39 (2009)

    Article  Google Scholar 

  41. Ahn, D.G., Kim, M.S., Yoo, Y.T., Park, H.J.: Effects of process parameters on surface characteristics in cutting of cold rolled steel sheets using a high-power CW Nd: YAG laser. Mater. Sci. Forum 580–582, 455–458 (2008)

    Article  Google Scholar 

  42. Ahn, D.G., Byun, K.W., Kang, M.C.: Thermal characteristics in the cutting of inconel 718 superalloy using CW Nd:YAG laser. J. Mater. Sci. Technol. 26(4), 362–366 (2010)

    Article  Google Scholar 

  43. Hasçalık, A., Ay, M.: CO2 laser cut quality of Inconel 718 nickel—based superalloy. Opt. Laser Technol. 48, 554–564 (2013)

    Article  Google Scholar 

  44. Wolynski, A., Herrmann, T., Mucha, P., Haloui, H., L’huillier, J.: Laser ablation of CFRP using picosecond laser pulses at different wavelengths from UV to IR. Phys. Procedia, 12(Part B), 292–301 (2011)

    Google Scholar 

  45. Jiao, J., Wang, X.: Cutting glass substrates with dual-laser beams. Opt. Lasers Eng. 47(7–8), 860–864 (2009)

    Article  Google Scholar 

  46. Emmelmanna, C., Petersen, M., Goeke, A., Canisius, M.: Analysis of laser ablation of CFRP by ultra-short laser pulses with short wavelength. Phys. Procedia 12(Part A), 565–571 (2011)

    Google Scholar 

  47. Ghosal, A., Manna, A.: Response surface method based optimization of ytterbium fiber laser parameter during machining of Al/Al2O3-MMC. Opt. Laser Technol. 46, 67–76 (2013)

    Article  Google Scholar 

  48. Ulutan, D., Ozel, T.: Machining induced surface integrity in titanium and nickel alloys: a review. Int. J. Mach. Tools Manuf. 51(3), 250–280 (2011)

    Article  Google Scholar 

  49. Cicală, E., Soveja, A., Sallamand, P., Grevey, D., Jouvard, J.M.: The application of the random balance method in laser machining of metals. J. Mater. Process. Technol. 196(1–3), 393–401 (2008)

    Article  Google Scholar 

  50. Perry, T.L., Werschmoeller, D., Li, X., Pfefferkorn, F.E., Duffie, N.A.: Pulsed laser polishing of micro-milled Ti6Al4V samples. J. Manuf. Process. 11(2), 74–81 (2009)

    Article  Google Scholar 

  51. Ahmed, N., Darwish, S., Alahmari, A.M., Salik, K.: Laser ablation process competency to fabricate microchannels in titanium alloy. Mater. Manuf. Process. 30(11), 1290–1297 (2015)

    Article  Google Scholar 

  52. Dehmas, M., Lacaze, J., Niang, A., Viguier, B.: TEM study of high-temperature precipitation of delta phase in Inconel 718 alloy. Adv. Mater. Sci. Eng. 2011, e940634 (2011)

    Article  Google Scholar 

  53. Kuo, C.-M., Yang, Y.-T., Bor, H.-Y., Wei, C.-N., Tai, C.-C.: Aging effects on the microstructure and creep behavior of Inconel 718 superalloy. Mater. Sci. Eng. A 510–511, 289–294 (2009)

    Article  Google Scholar 

  54. Aliou Niang, B.V.: Some features of anisothermal solid-state transformations in alloy 718. Mater. Charact. 61(5), 525–534 (2010)

    Article  Google Scholar 

  55. Ghosh, S., Yadav, S., Das, G.: Study of standard heat treatment on mechanical properties of Inconel 718 using ball indentation technique. Mater. Lett. 62(17–18), 2619–2622 (2008)

    Article  Google Scholar 

  56. Chester, T.S., Norman, S.S., William, C.H.: Wiley: superalloys II: high-temperature materials for aerospace and industrial power [Online]. Available: http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471011479.html. Accessed: 26 Apr 2015

  57. Yang, X., Richard Liu, C.: Machining titanium and its alloys. Mach. Sci. Technol. 3(1), 107–139 (1999)

    Article  Google Scholar 

  58. Yilbas, B.S., Akhtar, S.S., Karatas, C.: Laser surface treatment of Inconel 718 alloy: thermal stress analysis. Opt. Lasers Eng. 48(7–8), 740–749 (2010)

    Article  Google Scholar 

  59. Reissig, L., Völkl, R., Mills, M.J., Glatzel, U.: Investigation of near surface structure in order to determine process-temperatures during different machining processes of Ti6Al4V. Scr. Mater. 50(1), 121–126 (2004)

    Article  Google Scholar 

  60. Choi, H., Li, X.: Fabrication and application of micro thin film thermocouples for transient temperature measurement in nanosecond pulsed laser micromachining of nickel. Sens. Actuators Phys. 136(1), 118–124 (2007)

    Article  Google Scholar 

  61. Semaltianos, N.G., Perrie, W., French, P., Sharp, M., Dearden, G., Watkins, K.G.: Femtosecond laser surface texturing of a nickel-based superalloy. Appl. Surf. Sci. 255(5, Part 2), 2796–2802 (2008)

    Google Scholar 

  62. Fauchet, P.M.: Gradual surface transitions on semiconductors induced by multiple picosecond laser pulses. Phys. Lett. A 93(3), 155–157 (1983)

    Article  Google Scholar 

  63. Fournier, I., Marinach, C., Tabet, J.C., Bolbach, G.: Irradiation effects in MALDI, ablation, ion production, and surface modifications. Part II: 2,5-dihydroxybenzoic acid monocrystals. J. Am. Soc. Mass Spectrom. 14(8), 893–899 (2003)

    Article  Google Scholar 

  64. Li, L., Kim, J.H., Shukor, M.H.A.: Grit blast assisted laser milling/grooving of metallic alloys. CIRP Ann. Manuf. Technol. 54(1), 183–186 (2005)

    Article  Google Scholar 

  65. Malhotra, R., Saxena, I., Ehmann, K., Cao, J.: Laser-induced plasma micro-machining (LIPMM) for enhanced productivity and flexibility in laser-based micro-machining processes. CIRP Ann. Manuf. Technol. 62(1), 211–214 (2013)

    Article  Google Scholar 

  66. Lee, S.W., Shin, H.S., Chu, C.N.: Fabrication of micro-pin array with high aspect ratio on stainless steel using nanosecond laser beam machining. Appl. Surf. Sci. 264, 653–663 (2013)

    Article  Google Scholar 

  67. Samant, A.N., Dahotre, N.B.: Differences in physical phenomena governing laser machining of structural ceramics. Ceram. Int. 35(5), 2093–2097 (2009)

    Article  Google Scholar 

  68. Samant, A.N., Dahotre, N.B.: An integrated computational approach to single-dimensional laser machining of magnesia. Opt. Lasers Eng. 47(5), 570–577 (2009)

    Article  Google Scholar 

  69. Girardot, J., Schneider, M., Berthe, L., Favier, V.: Investigation of delamination mechanisms during a laser drilling on a cobalt-base superalloy. J. Mater. Process. Technol. 213(10), 1682–1691 (2013)

    Article  Google Scholar 

  70. Voisey, K.T., Clyne, T.W.: Laser drilling of cooling holes through plasma sprayed thermal barrier coatings. Surf. Coat. Technol. 176(3), 296–306 (2004)

    Article  Google Scholar 

  71. Yilbas, B.S., Akhtar, S.S., Karatas, C.: Laser trepanning of a small diameter hole in titanium alloy: temperature and stress fields. J. Mater. Process. Technol. 211(7), 1296–1304 (2011)

    Article  Google Scholar 

  72. Tam, S.C., Yeo, C.Y., Jana, S., Lau, M.W.S., Lim, L.E.N., Yang, L.J., Noor, Y.M.: Optimization of laser deep-hole drilling of Inconel 718 using the Taguchi method. J. Mater. Process. Technol. 37(1–4), 741–757 (1993)

    Article  Google Scholar 

  73. Mishra, S., Yadava, V.: Modeling and optimization of laser beam percussion drilling of thin aluminum sheet. Opt. Laser Technol. 48, 461–474 (2013)

    Article  Google Scholar 

  74. Low, D.K.Y., Li, L., Byrd, P.J.: The effects of process parameters on spatter deposition in laser percussion drilling. Opt. Laser Technol. 32(5), 347–354 (2000)

    Article  Google Scholar 

  75. Yan, Y., Ji, L., Bao, Y., Jiang, Y.: An experimental and numerical study on laser percussion drilling of thick-section alumina. J. Mater. Process. Technol. 212(6), 1257–1270 (2012)

    Article  Google Scholar 

  76. Low, D.K.Y., Li, L., Corfe, A.G., Byrd, P.J.: Spatter-free laser percussion drilling of closely spaced array holes. Int. J. Mach. Tools Manuf. 41(3), 361–377 (2001)

    Article  Google Scholar 

  77. Choudhury, I.A., Chong, W.C., Vahid, G.: Hole qualities in laser trepanning of polymeric materials. Opt. Lasers Eng. 50(9), 1297–1305 (2012)

    Article  Google Scholar 

  78. He, D., Shinshi, T., Nakai, T.: Development of a maglev lens driving actuator for off-axis control and adjustment of the focal point in laser beam machining. Precis. Eng. 37(2), 255–264 (2013)

    Article  Google Scholar 

  79. Lendraitis, V., Brikas, M., Snitka, V., Mizarienė, V., Raciukaitis, G.: Fabrication of actuator for nanopositioning using laser micro-machining. Microelectron. Eng. 83(4–9), 1212–1215 (2006)

    Article  Google Scholar 

  80. Ng, G.K.L., Crouse, P.L., Li, L.: An analytical model for laser drilling incorporating effects of exothermic reaction, pulse width and hole geometry. Int. J. Heat Mass Transf. 49(7–8), 1358–1374 (2006)

    Article  MATH  Google Scholar 

  81. Beno, T., Hulling, U.: Measurement of cutting edge temperature in drilling. Procedia CIRP 3, 531–536 (2012)

    Article  Google Scholar 

  82. Ashkenasi, D., Kaszemeikat, T., Mueller, N., Dietrich, R., Eichler, H.J., Illing, G.: Laser trepanning for industrial applications. Phys. Procedia 12(Part B), 323–331 (2011)

    Google Scholar 

  83. Jahns, D., Kaszemeikat, T., Mueller, N., Ashkenasi, D., Dietrich, R., Eichler, H.J.: Laser trepanning of stainless steel. Phys. Procedia 41, 630–635 (2013)

    Article  Google Scholar 

  84. Fornaroli, C., Holtkamp, J., Gillner, A.: Laser-beam helical drilling of high quality micro holes. Phys. Procedia 41, 661–669 (2013)

    Article  Google Scholar 

  85. Man, H.C., Wang, Q., Guo, X.: Laser surface microdrilling of Ti and laser gas nitrided Ti for enhancing fixation of dental implants. Opt. Lasers Eng. 48(5), 583–588 (2010)

    Article  Google Scholar 

  86. Jiao, J., Wang, X.: A numerical simulation of machining glass by dual CO2-laser beams. Opt. Laser Technol. 40(2), 297–301 (2008)

    Article  Google Scholar 

  87. Wan, D., Liu, H., Wang, Y., Hu, D., Gui, Z.: CO2 laser beam modulating for surface texturing machining. Opt. Laser Technol. 40(2), 309–314 (2008)

    Article  Google Scholar 

  88. Tsai, C.-H., Chen, H.-W.: Laser milling of cavity in ceramic substrate by fracture-machining element technique. J. Mater. Process. Technol. 136(1–3), 158–165 (2003)

    Article  Google Scholar 

  89. Biswas, R., Kuar, A.S., Sarkar, S., Mitra, S.: A parametric study of pulsed Nd:YAG laser micro-drilling of gamma-titanium aluminide. Opt. Laser Technol. 42(1), 23–31 (2010)

    Article  Google Scholar 

  90. Chang, C.-W., Kuo, C.-P.: An investigation of laser-assisted machining of Al2O3 ceramics planing. Int. J. Mach. Tools Manuf. 47(3–4), 452–461 (2007)

    Article  Google Scholar 

  91. Germain, G., Dal Santo, P., Lebrun, J.L.: Comprehension of chip formation in laser assisted machining. Int. J. Mach. Tools Manuf. 51(3), 230–238 (2011)

    Article  Google Scholar 

  92. Pfefferkorn, F.E., Incropera, F.P., Shin, Y.C.: Heat transfer model of semi-transparent ceramics undergoing laser-assisted machining. Int. J. Heat Mass Transf. 48(10), 1999–2012 (2005)

    Article  Google Scholar 

  93. Tagliaferri, F., Leopardi, G., Semmler, U., Kuhl, M., Palumbo, B.: Study of the influences of laser parameters on laser assisted machining processes. Procedia CIRP 8, 170–175 (2013)

    Article  Google Scholar 

  94. Chang, C.-W., Kuo, C.-P.: Evaluation of surface roughness in laser-assisted machining of aluminum oxide ceramics with Taguchi method. Int. J. Mach. Tools Manuf. 47(1), 141–147 (2007)

    Article  Google Scholar 

  95. Bejjani, R., Shi, B., Attia, H., Balazinski, M.: Laser assisted turning of titanium metal matrix composite. CIRP Ann. Manuf. Technol. 60(1), 61–64 (2011)

    Article  Google Scholar 

  96. Attia, H., Tavakoli, S., Vargas, R., Thomson, V.: Laser-assisted high-speed finish turning of superalloy Inconel 718 under dry conditions. CIRP Ann. Manuf. Technol. 59(1), 83–88 (2010)

    Article  Google Scholar 

  97. García Navas, V., Arriola, I., Gonzalo, O., Leunda, J.: Mechanisms involved in the improvement of Inconel 718 machinability by laser assisted machining (LAM). Int. J. Mach. Tools Manuf. 74, 19–28 (2013)

    Google Scholar 

  98. Rahman Rashid, R.A., Sun, S., Wang, G., Dargusch, M.S.: An investigation of cutting forces and cutting temperatures during laser-assisted machining of the Ti–6Cr–5Mo–5V–4Al beta titanium alloy. Int. J. Mach. Tools Manuf. 63, 58–69 (2012)

    Google Scholar 

  99. Rahman Rashid, R.A., Sun, S., Wang, G., Dargusch, M.S.: The effect of laser power on the machinability of the Ti-6Cr-5Mo-5V-4Al beta titanium alloy during laser assisted machining. Int. J. Mach. Tools Manuf. 63, 41–43 (2012)

    Google Scholar 

  100. Dumitrescu, P., Koshy, P., Stenekes, J., Elbestawi, M.A.: High-power diode laser assisted hard turning of AISI D2 tool steel. Int. J. Mach. Tools Manuf. 46(15), 2009–2016 (2006)

    Article  Google Scholar 

  101. Zamani, H., Hermani, J.-P., Sonderegger, B., Sommitsch, C.: 3D simulation and process optimization of laser assisted milling of Ti6Al4V. Procedia CIRP 8, 75–80 (2013)

    Article  Google Scholar 

  102. Masood, S.H., Armitage, K., Brandt, M.: An experimental study of laser-assisted machining of hard-to-wear white cast iron. Int. J. Mach. Tools Manuf. 51(6), 450–456 (2011)

    Article  Google Scholar 

  103. Skvarenina, S., Shin, Y.C.: Laser-assisted machining of compacted graphite iron. Int. J. Mach. Tools Manuf. 46(1), 7–17 (2006)

    Article  Google Scholar 

  104. Kim, D.-H., Lee, C.-M.: A study of cutting force and preheating-temperature prediction for laser-assisted milling of Inconel 718 and AISI 1045 steel. Int. J. Heat Mass Transf. 71, 264–274 (2014)

    Article  Google Scholar 

  105. Dandekar, C.R., Shin, Y.C., Barnes, J.: Machinability improvement of titanium alloy (Ti–6Al–4V) via LAM and hybrid machining. Int. J. Mach. Tools Manuf. 50(2), 174–182 (2010)

    Article  Google Scholar 

  106. Melkote, S., Kumar, M., Hashimoto, F., Lahoti, G.: Laser assisted micro-milling of hard-to-machine materials. CIRP Ann. Manuf. Technol. 58(1), 45–48 (2009)

    Article  Google Scholar 

  107. Bermingham, M.J., Palanisamy, S., Dargusch, M.S.: Understanding the tool wear mechanism during thermally assisted machining Ti-6Al-4V. Int. J. Mach. Tools Manuf. 62, 76–87 (2012)

    Article  Google Scholar 

  108. Ding, H., Shin, Y.C.: Laser-assisted machining of hardened steel parts with surface integrity analysis. Int. J. Mach. Tools Manuf. 50(1), 106–114 (2010)

    Article  Google Scholar 

  109. Yang, J., Sun, S., Brandt, M., Yan, W.: Experimental investigation and 3D finite element prediction of the heat affected zone during laser assisted machining of Ti6Al4V alloy. J. Mater. Process. Technol. 210(15), 2215–2222 (2010)

    Article  Google Scholar 

  110. Singh, R., Alberts, M.J., Melkote, S.N.: Characterization and prediction of the heat-affected zone in a laser-assisted mechanical micromachining process. Int. J. Mach. Tools Manuf. 48(9), 994–1004 (2008)

    Article  Google Scholar 

  111. Yilbas, B.S., Davies, R., Yilbas, Z.: Study into penetration speed during CO2 laser cutting of stainless steel. Opt. Lasers Eng. 17(2), 69–82 (1992)

    Article  Google Scholar 

  112. Rozzi, J.C., Incropera, F.P., Shin, Y.C.: Transient, three-dimensional heat transfer model for the laser assisted machining of silicon nitride: II. Assessment of parametric effects. Int. J. Heat Mass Transf. 43(8), 1425–1437 (2000)

    Article  MATH  Google Scholar 

  113. Tian, Y., Shin, Y.C.: Thermal modeling for laser-assisted machining of silicon nitride ceramics with complex features. J. Manuf. Sci. Eng. 128(2), 425–434 (2005)

    Article  Google Scholar 

  114. Venkatesan, K., Ramanujam, R., Kuppan, P.: Analysis of cutting forces and temperature in laser assisted machining of Inconel 718 using Taguchi method. Procedia Eng. 97, 1637–1646 (2014)

    Article  Google Scholar 

  115. Attia, H., Tavakoli, S., Vargas, R., Thomson, V.: Laser-assisted high-speed finish turning of superalloy Inconel 718 under dry conditions. CIRP Ann. Manuf. Technol. 59(1), 83–88 (2010)

    Article  Google Scholar 

  116. Rebro, P.A., Shin, Y.C., Incropera, F.P.: Design of operating conditions for crackfree laser-assisted machining of mullite. Int. J. Mach. Tools Manuf. 44(7–8), 677–694 (2004)

    Article  Google Scholar 

  117. Venkatesan, K., Ramanujam, R., Kuppan, P.: Laser assisted machining of difficult to cut materials: research opportunities and future directions—a comprehensive review. Procedia Eng. 97, 1626–1636 (2014)

    Article  Google Scholar 

  118. Stephen, A., Sepold, G., Metev, S., Vollertsen, F.: Laser-induced liquid-phase jet-chemical etching of metals. J. Mater. Process. Technol. 149(1–3), 536–540 (2004)

    Article  Google Scholar 

  119. Zhu, D., Qu, N.S., Li, H.S., Zeng, Y.B., Li, D.L., Qian, S.Q.: Electrochemical micromachining of microstructures of micro hole and dimple array. CIRP Ann. Manuf. Technol. 58(1), 177–180 (2009)

    Article  Google Scholar 

  120. Ali, S., Hinduja, S., Atkinson, J., Pandya, M.: Shaped tube electrochemical drilling of good quality holes. CIRP Ann. Manuf. Technol. 58(1), 185–188 (2009)

    Article  Google Scholar 

  121. Jo, C.H., Kim, B.H., Chu, C.N.: Micro electrochemical machining for complex internal micro features. CIRP Ann. Manuf. Technol. 58(1), 181–184 (2009)

    Article  Google Scholar 

  122. Curtis, D.T., Soo, S.L., Aspinwall, D.K., Sage, C.: Electrochemical superabrasive machining of a nickel-based aeroengine alloy using mounted grinding points. CIRP Ann. Manuf. Technol. 58(1), 173–176 (2009)

    Article  Google Scholar 

  123. Kelly, J.J., Philipsen, H.G.G.: Anisotropy in the wet-etching of semiconductors. Curr. Opin. Solid State Mater. Sci. 9(1–2), 84–90 (2005)

    Article  Google Scholar 

  124. Stephen, A.: Mechanisms and applications of laser chemical machining. Phys. Procedia 12(Part B), 261–267 (2011)

    Google Scholar 

  125. Ting, H.T., Abou-El-hossein, K.A., Chua, H.B.: Review of micromachining of ceramics by etching. Trans. Nonferrous Met. Soc. China 19(Supplement 1), s1–s16 (2009)

    Article  Google Scholar 

  126. Dausinger, F.: Femtosecond technology for precision manufacturing: fundamental and technical aspects. 50 (2003)

    Google Scholar 

  127. Yamamura, K., Shimada, S., Mori, Y.: Damage-free improvement of thickness uniformity of quartz crystal wafer by plasma chemical vaporization machining. CIRP Ann. Manuf. Technol. 57(1), 567–570 (2008)

    Article  Google Scholar 

  128. Stephen, A., Vollertsen, F.: Mechanisms and processing limits in laser thermochemical machining. CIRP Ann. Manuf. Technol. 59(1), 251–254 (2010)

    Article  Google Scholar 

  129. Kurita, T., Kasashima, N., Yamakiri, H., Ichihashi, N., Kobayashi, N., Ashida, K., Sasaki, S.: Development of the new IC decapsulation technology. Opt. Lasers Eng. 49(9–10), 1216–1223 (2011)

    Article  Google Scholar 

  130. Li, L., Achara, C.: Chemical assisted laser machining for the minimisation of recast and heat affected zone. CIRP Ann. Manuf. Technol. 53(1), 175–178 (2004)

    Article  Google Scholar 

  131. Mehrafsun, S., Vollertsen, F.: Disturbance of material removal in laser-chemical machining by emerging gas. CIRP Ann. Manuf. Technol. 62(1), 195–198 (2013)

    Article  Google Scholar 

  132. Matsuo, S., Sumi, H., Kiyama, S., Tomita, T., Hashimoto, S.: Femtosecond laser-assisted etching of Pyrex glass with aqueous solution of KOH. Appl. Surf. Sci. 255(24), 9758–9760 (2009)

    Article  Google Scholar 

  133. Luo, S.-W., Tsai, H.-Y.: Fabrication of 3D photonic structure on glass materials by femtosecond laser modification with HF etching process. J. Mater. Process. Technol. 213(12), 2262–2269 (2013)

    Article  Google Scholar 

  134. Lin, D., Zhang, M.Y., Ye, C., Liu, Z., Liu, C.R., Cheng, G.J.: Large scale, highly dense nanoholes on metal surfaces by underwater laser assisted hydrogen etching near nanocrystalline boundary. Appl. Surf. Sci. 258(10), 4254–4259 (2012)

    Article  Google Scholar 

  135. Näth, O., Stephen, A., Rösler, J., Vollertsen, F.: Structuring of nanoporous nickel-based superalloy membranes via laser etching. J. Mater. Process. Technol. 209(10), 4739–4743 (2009)

    Article  Google Scholar 

  136. Al-Khazraji, K.K., Rasheeda, B.G., Ibrahem, M.A., Mohammed, A.F.: Effect of laser-induced etching process on porous structures. Procedia Eng. 38, 1381–1390 (2012)

    Article  Google Scholar 

  137. Kumar, R., Mavi, H.S., Shukla, A.K.: Macro and microsurface morphology reconstructions during laser-induced etching of silicon. Micron 39(3), 287–293 (2008)

    Article  Google Scholar 

  138. Nayak, B.K., Gupta, M.C., Kolasinski, K.W.: Ultrafast-laser-assisted chemical restructuring of silicon and germanium surfaces. Appl. Surf. Sci. 253(15), 6580–6583 (2007)

    Article  Google Scholar 

  139. Dai, Y.-T., Xu, G., Tong, X.-L.: Deep UV laser etching of GaN epilayers grown on sapphire substrate. J. Mater. Process. Technol. 212(2), 492–496 (2012)

    Article  Google Scholar 

  140. Zhang, F., Duan, J., Zeng, X., Cao, Y.: UV laser microprocessing and post chemical etching on ultrathin Al2O3 ceramic substrate. J. Eur. Ceram. Soc. 31(9), 1631–1639 (2011)

    Article  Google Scholar 

  141. Zimmer, K., Böhme, R., Pissadakis, S., Hartwig, L., Reisse, G., Rauschenbach, B.: Backside etching of fused silica with Nd:YAG laser. Appl. Surf. Sci. 253(5), 2796–2800 (2006)

    Article  Google Scholar 

  142. Oh, K.H., Park, J.B., Cho, S.I., Im, H.D., Jeong, S.H.: Investigation of sidewall roughness of the microgrooves manufactured with laser-induced etching technique. Appl. Surf. Sci. 255(24), 9835–9839 (2009)

    Article  Google Scholar 

  143. Luo, S.-W., Chang, T.-L., Tsai, H.-Y.: Fabrication of diffractive microlens array by femtosecond laser-assisted etching process. Microelectron. Eng. 98, 448–452 (2012)

    Article  Google Scholar 

  144. Luo, S.-W., Chang, T.-L., Tsai, H.-Y.: Fabrication of glass micro-prisms using ultra-fast laser pulses with chemical etching process. Opt. Lasers Eng. 50(2), 220–225 (2012)

    Article  Google Scholar 

  145. Datta, M., Landolt, D.: Fundamental aspects and applications of electrochemical microfabrication. Electrochim. Acta 45(15–16), 2535–2558 (2000)

    Article  Google Scholar 

  146. Park, B.J., Kim, B.H., Chu, C.N.: The effects of tool electrode size on characteristics of micro electrochemical machining. CIRP Ann. Manuf. Technol. 55(1), 197–200 (2006)

    Article  Google Scholar 

  147. Kasashima, N., Kurita, T.: Laser and electrochemical complex machining of micro-stent with on-machine three-dimensional measurement. Opt. Lasers Eng. 50(3), 354–358 (2012)

    Article  Google Scholar 

  148. Pajak, P.T., Desilva, A.K.M., Harrison, D.K., Mcgeough, J.A.: Precision and efficiency of laser assisted jet electrochemical machining. Precis. Eng. 30(3), 288–298 (2006)

    Article  Google Scholar 

  149. Long, Y., Shi, T., Xiong, L.: Excimer laser electrochemical etching n-Si in the KOH solution. Opt. Lasers Eng. 48(5), 570–574 (2010)

    Article  Google Scholar 

  150. Kikuchi, T., Wachi, Y., Takahashi, T., Sakairi, M., Suzuki, R.O.: Fabrication of a meniscus microlens array made of anodic alumina by laser irradiation and electrochemical techniques. Electrochim. Acta 94, 269–276 (2013)

    Article  Google Scholar 

  151. Shin, H.S., Park, M.S., Chu, C.N.: Electrochemical etching using laser masking for multilayered structures on stainless steel. CIRP Ann. Manuf. Technol. 59(1), 585–588 (2010)

    Article  Google Scholar 

  152. Shin, H.S., Chung, D.K., Park, M.S., Chu, C.N.: Analysis of machining characteristics in electrochemical etching using laser masking. Appl. Surf. Sci. 258(5), 1689–1698 (2011)

    Article  Google Scholar 

  153. Zhang, H., Xu, J., Wang, J.: Investigation of a novel hybrid process of laser drilling assisted with jet electrochemical machining. Opt. Lasers Eng. 47(11), 1242–1249 (2009)

    Article  Google Scholar 

  154. Hua, Z., Jiawen, X.: Modeling and experimental investigation of laser drilling with jet electrochemical machining. Chin. J. Aeronaut. 23(4), 454–460 (2010)

    Article  Google Scholar 

  155. De Silva, A.K.M., Pajak, P.T., McGeough, J.A., Harrison, D.K.: Thermal effects in laser assisted jet electrochemical machining. CIRP Ann. Manuf. Technol. 60(1), 243–246 (2011)

    Article  Google Scholar 

  156. Pajak, P.T., De Silva, A.K.M., McGeough, J.A., Harrison, D.K.: Modelling the aspects of precision and efficiency in laser-assisted jet electrochemical machining (LAJECM). J. Mater. Process. Technol. 149(1–3), 512–518 (2004)

    Article  Google Scholar 

  157. Tangwarodomnukun, V., Wang, J., Huang, C.Z., Zhu, H.T.: An investigation of hybrid laser–waterjet ablation of silicon substrates. Int. J. Mach. Tools Manuf. 56, 39–49 (2012)

    Article  Google Scholar 

  158. Yang, G.W.: Laser ablation in liquids: applications in the synthesis of nanocrystals. Prog. Mater Sci. 52(4), 648–698 (2007)

    Article  Google Scholar 

  159. Darwish, S., Ahmed, N., Alahmari, A.M., Mufti, N.A.: A comparison of laser beam machining of micro-channels under dry and wet mediums. Int. J. Adv. Manuf. Technol. 1–17 (2015)

    Google Scholar 

  160. Dupont, A., Caminat, P., Bournot, P., Gauchon, J.P.: Enhancement of material ablation using 248, 308, 532, 1064 nm laser pulse with a water film on the treated surface. J. Appl. Phys. 78(3), 2022–2028 (1995)

    Article  Google Scholar 

  161. Yan, Y., Li, L., Sezer, K., Wang, W., Whitehead, D., Ji, L., Bao, Y., Jiang, Y.: CO2 laser underwater machining of deep cavities in alumina. J. Eur. Ceram. Soc. 31(15), 2793–2807 (2011)

    Article  Google Scholar 

  162. Choo, K.L., Ogawa, Y., Kanbargi, G., Otra, V., Raff, L.M., Komanduri, R.: Micromachining of silicon by short-pulse laser ablation in air and under water. Mater. Sci. Eng. A 372(1–2), 145–162 (2004)

    Article  Google Scholar 

  163. Dolgaev, S.I., Lyalin, A.A., Shafeev, G.A., Voronov, S.: Fast etching and metallization of SiC ceramics with copper-vapor-laser radiation. Appl. Phys. A 63(1), 75–79 (1996)

    Article  Google Scholar 

  164. Kruusing, A., Leppävuori, S., Uusimäki, A., Petrêtis, B., Makarova, O.: Micromachining of magnetic materials. Sens. Actuators Phys. 74(1–3), 45–51 (1999)

    Article  Google Scholar 

  165. Geiger, M., Becker, W., Rebhan, T., Hutfless, J., Lutz, N.: Increase of efficiency for the XeCl excimer laser ablation of ceramics. Appl. Surf. Sci. 96–98, 309–315 (1996)

    Article  Google Scholar 

  166. Geiger, M., Roth, S., Becker, W.: Microstructuring and surface modification by excimer laser machining under thin liquid films. 200–208 (1998)

    Google Scholar 

  167. Ren, J., Kelly, M., Hesselink, L.: Laser ablation of silicon in water with nanosecond and femtosecond pulses. Opt. Lett. 30(13), 1740–1742 (2005)

    Article  Google Scholar 

  168. Dowding, C.F., Lawrence, J.: Impact of open de-ionized water thin film laminar immersion on the liquid-immersed ablation threshold and ablation rate of features machined by KrF excimer laser ablation of bisphenol A polycarbonate. Opt. Lasers Eng. 47(11), 1169–1176 (2009)

    Article  Google Scholar 

  169. Daminelli, G., Krüger, J., Kautek, W.: Femtosecond laser interaction with silicon under water confinement. Thin Solid Films 467(1–2), 334–341 (2004)

    Article  Google Scholar 

  170. Bärsch, N.: Improving laser ablation of zirconia by liquid films: multiple influence of liquids on surface machining and nanoparticle generation. J. Laser Micro/Nanoeng 4(1), 66–70 (2009)

    Article  Google Scholar 

  171. Kruusing, A.: Underwater and water-assisted laser processing: Part 2—Etching, cutting and rarely used methods. Opt. Lasers Eng. 41(2), 329–352 (2004)

    Article  Google Scholar 

  172. Patel, D.N., Singh, R.P., Thareja, R.K.: Craters and nanostructures with laser ablation of metal/metal alloy in air and liquid. Appl. Surf. Sci. 288, 550–557 (2014)

    Article  Google Scholar 

  173. Stephan Roth, M.G.: Novel technique for high-quality microstructuring with excimer lasers (2000)

    Google Scholar 

  174. Alahmari, A.M., Ahmed, N., Darwish, S.: Laser beam micro-machining under water immersion. Int. J. Adv. Manuf. Technol. 1–11 (2015)

    Google Scholar 

  175. Zhu, S., Lu, Y.F., Hong, M.H., Chen, X.Y.: Laser ablation of solid substrates in water and ambient air. J. Appl. Phys. 89(4), 2400–2403 (2001)

    Article  Google Scholar 

  176. Dowding, C., Lawrence, J.: Effects of closed immersion filtered water flow velocity on the ablation threshold of bisphenol A polycarbonate during excimer laser machining. Appl. Surf. Sci. 256(12), 3705–3713 (2010)

    Article  Google Scholar 

  177. Peyre, P., Berthe, L., Scherpereel, X., Fabbro, R.: Laser-shock processing of aluminium-coated 55C1 steel in water-confinement regime, characterization and application to high-cycle fatigue behaviour. J. Mater. Sci. 33(6), 1421–1429 (1998)

    Article  Google Scholar 

  178. Voronov, V.V., Dolgaev, S.I., Lyalin, A.A., Shafeev, G.A.: Laser-assisted etching of the surface of polycrystalline silicon carbide by copper-vapour laser radiation. Quantum Electron. 26(7), 621 (1996)

    Article  Google Scholar 

  179. Ohara, M.N.O.J.: High aspect ratio etching by infrared laser induced micro bubbles. 175–179 (1997)

    Google Scholar 

  180. Kaakkunen, J.J.J., Silvennoinen, M., Paivasaari, K., Vahimaa, P.: Water-assisted femtosecond laser pulse ablation of high aspect ratio holes. Phys. Procedia 12(Part B), 89–93 (2011)

    Google Scholar 

  181. Morita, N., Ishida, S., Fujimori, Y., Ishikawa, K.: Pulsed laser processing of ceramics in water. Appl. Phys. Lett. 52, 1965 (1988)

    Article  Google Scholar 

  182. Mahdieh, M.H., Nikbakht, M., Eghlimi Moghadam, Z., Sobhani, M.: Crater geometry characterization of Al targets irradiated by single pulse and pulse trains of Nd:YAG laser in ambient air and water. Appl. Surf. Sci. 256(6), 1778–1783 (2010)

    Article  Google Scholar 

  183. Li, Y., Itoh, K., Watanabe, W., Yamada, K., Kuroda, D., Nishii, J., Jiang, Y.: Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses. Opt. Lett. 26(23), 1912–1914 (2001)

    Article  Google Scholar 

  184. Tsai, C.-H., Li, C.-C.: Investigation of underwater laser drilling for brittle substrates. J. Mater. Process. Technol. 209(6), 2838–2846 (2009)

    Article  Google Scholar 

  185. Makridis, S.S., Gkanas, E.I., Panagakos, G., Kikkinides, E.S., Stubos, A.K., Wagener, P., Barcikowski, S.: Polymer-stable magnesium nanocomposites prepared by laser ablation for efficient hydrogen storage. Int. J. Hydrog. Energy 38(26), 11530–11535 (2013)

    Article  Google Scholar 

  186. Kazakevich, P.V., Simakin, A.V., Voronov, V.V., Shafeev, G.A.: Laser induced synthesis of nanoparticles in liquids. Appl. Surf. Sci. 252(13), 4373–4380 (2006)

    Article  Google Scholar 

  187. Semaltianos, N.G., Logothetidis, S., Frangis, N., Tsiaoussis, I., Perrie, W., Dearden, G., Watkins, K.G.: Laser ablation in water: a route to synthesize nanoparticles of titanium monoxide. Chem. Phys. Lett. 496(1–3), 113–116 (2010)

    Article  Google Scholar 

  188. Zhang, J., Lan, C.Q.: Nickel and cobalt nanoparticles produced by laser ablation of solids in organic solution. Mater. Lett. 62(10–11), 1521–1524 (2008)

    Article  Google Scholar 

  189. Piriyawong, V., Thongpool, V., Asanithi, P., Limsuwan, P.: Effect of laser pulse energy on the formation of alumina nanoparticles synthesized by laser ablation in water. Procedia Eng. 32, 1107–1112 (2012)

    Article  Google Scholar 

  190. Elaboudi, I., Lazare, S., Belin, C., Bruneel, J.L., Servant, L.: Organic nanoparticles suspensions preparation by underwater excimer laser ablation of polycarbonate. Appl. Surf. Sci. 253(19), 7835–7839 (2007)

    Article  Google Scholar 

  191. Mahfouz, R., Cadete Santos Aires, F.J., Brenier, A., Jacquier, B., Bertolini, J.C.: Synthesis and physico-chemical characteristics of nanosized particles produced by laser ablation of a nickel target in water. Appl. Surf. Sci. 254(16), 5181–5190 (2008)

    Article  Google Scholar 

  192. Gondal, M.A., Saleh, T.A., Drmosh, Q.A.: Synthesis of nickel oxide nanoparticles using pulsed laser ablation in liquids and their optical characterization. Appl. Surf. Sci. 258(18), 6982–6986 (2012)

    Article  Google Scholar 

  193. Huang, C.-N., Bow, J.-S., Zheng, Y., Chen, S.-Y., Ho, N.J., Shen, P.: Nonstoichiometric titanium oxides via pulsed laser ablation in water. Nanoscale Res. Lett. 5(6), 972–985 (2010)

    Article  Google Scholar 

  194. Compagnini, G., Sinatra, M.G., Messina, G.C., Patanè, G., Scalese, S., Puglisi, O.: Monitoring the formation of inorganic fullerene-like MoS2 nanostructures by laser ablation in liquid environments. Appl. Surf. Sci. 258(15), 5672–5676 (2012)

    Article  Google Scholar 

  195. Dolgaev, S.I., Simakin, A.V., Voronov, V.V., Shafeev, G.A., Bozon-Verduraz, F.: Nanoparticles produced by laser ablation of solids in liquid environment. Appl. Surf. Sci. 186(1–4), 546–551 (2002)

    Article  Google Scholar 

  196. Kazakevich, P.V., Voronov, V.V., Simakin, A.V., Shafeev, G.A.: Production of copper and brass nanoparticles upon laser ablation in liquids. Quantum Electron. 34(10), 951–956 (2004)

    Article  Google Scholar 

  197. Anikin, K.V., Melnik, N.N., Simakin, A.V., Shafeev, G.A., Voronov, V.V., Vitukhnovsky, A.G.: Formation of ZnSe and CdS quantum dots via laser ablation in liquids. Chem. Phys. Lett. 366(3–4), 357–360 (2002)

    Article  Google Scholar 

  198. Ohadi, M., Choo, K., Dessiatoun, S., Cetegen, E.: Emerging applications of microchannels. In: Next Generation Microchannel Heat Exchangers, pp. 67–105. Springer, New York (2013)

    Google Scholar 

  199. Wang, Z., Fan, J., Luo, K.: Combined multi-direct forcing and immersed boundary method for simulating flows with moving particles. Int. J. Multiph. Flow 34(3), 283–302 (2008)

    Article  Google Scholar 

  200. Ponyavin, V., Chen, Y., Mohamed, T., Trabia, M., Wilson, M., Hechanova, A.E.: Modeling and parametric study of a ceramic high temperature heat exchanger and chemical decomposer. 1013–1020 (2006, Jan)

    Google Scholar 

  201. Mei, D., Qian, M., Liu, B., Jin, B., Yao, Z., Chen, Z.: A micro-reactor with micro-pin-fin arrays for hydrogen production via methanol steam reforming. J. Power Sources 205, 367–376 (2012)

    Article  Google Scholar 

  202. Sommers, A., Wang, Q., Han, X., T’Joen, C., Park, Y., Jacobi, A.: Ceramics and ceramic matrix composites for heat exchangers in advanced thermal systems—a review. Appl. Therm. Eng. 30(11–12), 1277–1291 (2010)

    Article  Google Scholar 

  203. Goel, N., Goswami, D.Y.: A compact falling film absorber. J. Heat Transf. 127(9), 957 (2005)

    Article  Google Scholar 

  204. Hessel, V., Ehrfeld, W., Golbig, K., Haverkamp, V., Löwe, H., Storz, M., Wille, C., Guber, A.E., Jähnisch, K., Baerns, M.: Gas/liquid microreactors for direct fluorination of aromatic compounds using elemental fluorine. In: Ehrfeld, P.D.W. (ed.) Microreaction Technology: Industrial Prospects, pp. 526–540. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  205. Jähnisch, K., Baerns, M., Hessel, V., Ehrfeld, W., Haverkamp, V., Löwe, H., Wille, C., Guber, A.: Direct fluorination of toluene using elemental fluorine in gas/liquid microreactors. J. Fluor. Chem. 105(1), 117–128 (2000)

    Article  Google Scholar 

  206. Abdallah, B., Chao, T.-C., Fromme, P., Ros, A.: Size based nanoparticle separation using dielectrophoretic focusing for femtosecond nanocrystallography of membrane proteins. In: Proceedings of Mu TAS International Conference on Miniaturized Chemistry and Biochemical Analysis System, vol. 2012, pp. 458–460 (2012)

    Google Scholar 

  207. Jenks, J., Narayanan, V.: Effect of channel geometry variations on the performance of a constrained microscale-film ammonia-water bubble absorber. J. Heat Transf. 130(11), 112402 (2008)

    Article  Google Scholar 

  208. Marquardt, E.D., Radebaugh, R., Dobak, J.: A cryogenic catheter for treating heart arrhythmia. In: Kittel, P. (ed.) Advances in Cryogenic Engineering, pp. 903–910. Springer, US (1998)

    Chapter  Google Scholar 

  209. Campbell, G.O., Fryer, J.M.: Microchannel cooling device for small heat sources. US7836940 B2, 23 Nov 2010

    Google Scholar 

  210. Cotter, T.P.: Principles and prospects for micro heat pipes. NASA STIRecon Technical Report N, 84 (1984, Apr)

    Google Scholar 

  211. Kang, S.-W., Huang, D.: Fabrication of star grooves and rhombus grooves micro heat pipe. J. Micromech. Microeng. 12(5), 525 (2002)

    Article  Google Scholar 

  212. Berre, M.L., Launay, S., Sartre, V., Lallemand, M.: Fabrication and experimental investigation of silicon micro heat pipes for cooling electronics. J. Micromech. Microeng. 13(3), 436 (2003)

    Article  Google Scholar 

  213. Youn, Y.J., Kim, S.J.: Development of a compact micro pulsating heat pipe, p. T10133 (2011, Jan)

    Google Scholar 

  214. Lim, H.T., Kim, S.H., Im, H.D., Oh, K.H., Jeong, S.H.: Fabrication and evaluation of a copper flat micro heat pipe working under adverse-gravity orientation. J. Micromech. Microeng. 18(10), 105013 (2008)

    Article  Google Scholar 

  215. Klocke, F., Zeis, M., Klink, A., Veselovac, D.: Technological and economical comparison of roughing strategies via milling, sinking-EDM, wire-EDM and ECM for titanium- and nickel-based blisks. CIRP J. Manuf. Sci. Technol. 6(3), 198–203 (2013)

    Article  Google Scholar 

  216. Aramcharoen, A., Mativenga, P.T., Yang, S., Cooke, K.E., Teer, D.G.: Evaluation and selection of hard coatings for micro milling of hardened tool steel. Int. J. Mach. Tools Manuf. 48(14), 1578–1584 (2008)

    Article  Google Scholar 

  217. Ucun, İ., Aslantas, K., Bedir, F.: The performance Of DLC-coated and uncoated ultra-fine carbide tools in micromilling of Inconel 718. Precis. Eng. 41, 135–144 (2015)

    Article  Google Scholar 

  218. Ucun, İ., Aslantas, K., Bedir, F.: An experimental investigation of the effect of coating material on tool wear in micro milling of Inconel 718 super alloy. Wear 300(1–2), 8–19 (2013)

    Article  Google Scholar 

  219. Dornfeld, D., Min, S., Takeuchi, Y.: Recent advances in mechanical micromachining. CIRP Ann. Manuf. Technol. 55(2), 745–768 (2006)

    Article  Google Scholar 

  220. Vazquez, E., Gomar, J., Ciurana, J., Rodríguez, C.A.: Analyzing effects of cooling and lubrication conditions in micromilling of Ti6Al4V. J. Clean. Prod. 87, 906–913 (2015)

    Article  Google Scholar 

  221. Xu, J., Shi, L., Wang, C., Shan, D., Guo, B.: Micro hot embossing of micro-array channels in ultrafine-grained pure aluminum using a silicon die. J. Mater. Process. Technol. 225, 375–384 (2015)

    Article  Google Scholar 

  222. Gau, J.-T., Gu, H., Liu, X., Huang, K.-M., Lin, B.-T.: Forming micro channels on aluminum foils by using flexible die forming process. J. Manuf. Process. 19, 102–111 (2015)

    Article  Google Scholar 

  223. Jin, C.K., Kang, C.G.: Fabrication by vacuum die casting and simulation of aluminum bipolar plates with micro-channels on both sides for proton exchange membrane (PEM) fuel cells. Int. J. Hydrog. Energy 37(2), 1661–1676 (2012)

    Article  Google Scholar 

  224. Deng, D., Wan, W., Tang, Y., Wan, Z., Liang, D.: Experimental investigations on flow boiling performance of reentrant and rectangular microchannels—a comparative study. Int. J. Heat Mass Transf. 82, 435–446 (2015)

    Article  Google Scholar 

  225. Jahan, M.P., Kakavand, P., Kwang, E.L.M., Rahman, M., Wong, Y.S.: An experimental investigation into the micro-electro-discharge machining behaviour of aluminium alloy (AA 2024). Int. J. Adv. Manuf. Technol. 78(5–8), 1127–1139 (2014)

    Google Scholar 

  226. Rajurkar, K.P., Sundaram, M.M., Malshe, A.P.: Review of electrochemical and electrodischarge machining. Procedia CIRP 6, 13–26 (2013)

    Article  Google Scholar 

  227. Izquierdo, B., Plaza, S., Sánchez, J.A., Pombo, I., Ortega, N.: Numerical prediction of heat affected layer in the EDM of aeronautical alloys. Appl. Surf. Sci. 259, 780–790 (2012)

    Article  Google Scholar 

  228. Li, L., Wei, X.T., Li, Z.Y.: Surface integrity evolution and machining efficiency analysis of W-EDM of nickel-based alloy. Appl. Surf. Sci. 313, 138–143 (2014)

    Article  Google Scholar 

  229. Tsai, H.C., Yan, B.H., Huang, F.Y.: EDM performance of Cr/Cu-based composite electrodes. Int. J. Mach. Tools Manuf. 43(3), 245–252 (2003)

    Article  Google Scholar 

  230. Wang, C.-C., Chow, H.-M., Yang, L.-D., Lu, C.-T.: Recast layer removal after electrical discharge machining via Taguchi analysis: a feasibility study. J. Mater. Process. Technol. 209(8), 4134–4140 (2009)

    Article  Google Scholar 

  231. Beach, R., Benett, W.J., Freitas, B.L., Mundinger, D., Comaskey, B.J., Solarz, R.W., Emanuel, M.: Modular microchannel cooled heatsinks for high average power laser diode arrays. IEEE J. Quantum Electron. 28(4), 966–976 (1992)

    Article  Google Scholar 

  232. Nieto, D., Delgado, T., Flores-Arias, M.T.: Fabrication of microchannels on soda-lime glass substrates with a Nd:YVO4 laser. Opt. Lasers Eng. 63, 11–18 (2014)

    Article  Google Scholar 

  233. Suriano, R., Kuznetsov, A., Eaton, S.M., Kiyan, R., Cerullo, G., Osellame, R., Chichkov, B.N., Levi, M., Turri, S.: Femtosecond laser ablation of polymeric substrates for the fabrication of microfluidic channels. Appl. Surf. Sci. 257(14), 6243–6250 (2011)

    Article  Google Scholar 

  234. Vázquez, E., Ciurana, J., Rodríguez, C.A., Thepsonthi, T., Özel, T.: Swarm intelligent selection and optimization of machining system parameters for microchannel fabrication in medical devices. Mater. Manuf. Process. 26(3), 403–414 (2011)

    Article  Google Scholar 

  235. Kumar, A., Gupta, M.C.: Laser machining of micro-notches for fatigue life. Opt. Lasers Eng. 48(6), 690–697 (2010)

    Article  Google Scholar 

  236. Teixidor, D., Ferrer, I., Ciurana, J., Özel, T.: Optimization of process parameters for pulsed laser milling of micro-channels on AISI H13 tool steel. Robot. Comput. Integr. Manuf. 29(1), 209–218 (2013)

    Article  Google Scholar 

  237. Teixidor, D., Thepsonthi, T., Ciurana, J., Özel, T.: Nanosecond pulsed laser micromachining of PMMA-based microfluidic channels. J. Manuf. Process. 14(4), 435–442 (2012)

    Article  Google Scholar 

  238. Francescon, A., Mapelli, A., Nuessle, G., Petagna, P., Pezous, A., Renaud, P., Romagnoli, G.: Application of micro-channel cooling to the local thermal management of detectors electronics for particle physics. Microelectron. J. 44(7), 612–618 (2013)

    Article  Google Scholar 

  239. Xu, J., Gan, Y., Zhang, D., Li, X.: Microscale boiling heat transfer in a micro-timescale at high heat fluxes. J. Micromech. Microeng. 15(2), 362 (2005)

    Article  Google Scholar 

  240. Gómez, D., Goenaga, I.: On the incubation effect on two thermoplastics when irradiated with ultrashort laser pulses: broadening effects when machining microchannels. Appl. Surf. Sci. 253(4), 2230–2236 (2006)

    Article  Google Scholar 

  241. Prakash, S., Kumar, S.: Fabrication of microchannels on transparent PMMA using CO2 laser (10.6 μm) for microfluidic applications: an experimental investigation. Int. J. Precis. Eng. Manuf. 16(2), 361–366 (2015)

    Article  MathSciNet  Google Scholar 

  242. Wu, Z., Yan, H., Chen, H., Huang, H.: One-stage fabrication of sub-micron hydrophilic microchannels on PDMS. Appl. Surf. Sci. 255(8), 4702–4704 (2009)

    Article  Google Scholar 

  243. Holmberg, P., Pasiskevicius, V., Fokine, M.: Study of incubation effects during surface ablation using picosecond pulses at a wavelength of 800 nm. Phys. Status Solidi C 8(9), 2862–2865 (2011)

    Article  Google Scholar 

  244. Wang, Y., Sefiane, K., Harmand, S.: Flow boiling in high-aspect ratio mini- and micro-channels with FC-72 and ethanol: experimental results and heat transfer correlation assessments. Exp. Therm. Fluid Sci. 36, 93–106 (2012)

    Article  Google Scholar 

  245. Wu, H.Y., Cheng, P.: Boiling instability in parallel silicon microchannels at different heat flux. Int. J. Heat Mass Transf. 47(17–18), 3631–3641 (2004)

    Article  Google Scholar 

  246. Yang, L.-J., Chen, Y.-T., Kang, S.-W., Wang, Y.-C.: Fabrication of SU-8 embedded microchannels with circular cross-section. Int. J. Mach. Tools Manuf. 44(10), 1109–1114 (2004)

    Article  Google Scholar 

  247. Madhour, Y., Olivier, J., Costa-Patry, E., Paredes, S., Michel, B., Thome, J.R.: Flow boiling of R134a in a multi-microchannel heat sink with hotspot heaters for energy-efficient microelectronic CPU cooling applications. IEEE Trans. Compon. Packag. Manuf. Technol. 1(6), 873–883 (2011)

    Article  Google Scholar 

  248. Beer, N., Özkaya, E., Biermann, D.: Drilling of Inconel 718 with geometry-modified twist drills. Procedia CIRP 24, 49–55 (2014)

    Article  Google Scholar 

  249. Woon, K.S., Chaudhari, A., Kumar, A.S., Rahman, M.: The effects of tool degradation on hole straightness in deep hole gundrilling of Inconel-718. Procedia CIRP 14, 593–598 (2014)

    Article  Google Scholar 

  250. Sharman, A.R.C., Hughes, J.I., Ridgway, K.: An analysis of the residual stresses generated in Inconel 718TM when turning. J. Mater. Process. Technol. 173(3), 359–367 (2006)

    Article  Google Scholar 

  251. Madariaga, A., Esnaola, J.A., Fernandez, E., Arrazola, P.J., Garay, A., Morel, F.: Analysis of residual stress and work-hardened profiles on Inconel 718 when face turning with large-nose radius tools. Int. J. Adv. Manuf. Technol. 71(9–12), 1587–1598 (2014)

    Article  Google Scholar 

  252. Devillez, A., Le Coz, G., Dominiak, S., Dudzinski, D.: Dry machining of Inconel 718, workpiece surface integrity. J. Mater. Process. Technol. 211(10), 1590–1598 (2011)

    Article  Google Scholar 

  253. Choudhury, I.A., El-Baradie, M.A.: Machinability of nickel-base super alloys: a general review. J. Mater. Process. Technol. 77(1–3), 278–284 (1998)

    Article  Google Scholar 

  254. Klocke, F., Welling, D., Klink, A., Veselovac, D., Nöthe, T., Perez, R.: Evaluation of advanced wire-EDM capabilities for the manufacture of fir tree slots in Inconel 718. Procedia CIRP 14, 430–435 (2014)

    Article  Google Scholar 

  255. Manohar, M., Selvaraj, T., Sivakumar, D., Gopinath, S., George, K.M.: Experimental study to assess the effect of electrode bottom profiles while machining Inconel 718 through EDM process. Procedia Mater. Sci. 6, 92–104 (2014)

    Article  Google Scholar 

  256. Beri, N., Maheshwari, S., Sharma, C., Kumar, A.: Surface quality modification using powder metallurgy processed CuW electrode during electric discharge machining of Inconel 718. Procedia Mater. Sci. 5, 2629–2634 (2014)

    Article  Google Scholar 

  257. Ekmekci, B.: Residual stresses and white layer in electric discharge machining (EDM). Appl. Surf. Sci. 253(23), 9234–9240 (2007)

    Article  Google Scholar 

  258. Aspinwall, D.K., Soo, S.L., Berrisford, A.E., Walder, G.: Workpiece surface roughness and integrity after WEDM of Ti–6Al–4V and Inconel 718 using minimum damage generator technology. CIRP Ann. Manuf. Technol. 57(1), 187–190 (2008)

    Article  Google Scholar 

  259. Jeelani, S., Collins, M.R.: Effect of electric discharge machining on the fatigue life of Inconel 718. Int. J. Fatigue 10(2), 121–125 (1988)

    Article  Google Scholar 

  260. Lin, M., Tsao, C., Hsu, C., Chiou, A., Huang, P., Lin, Y.: Optimization of micro milling electrical discharge machining of Inconel 718 by Grey-Taguchi method. Trans. Nonferrous Met. Soc. China 23(3), 661–666 (2013)

    Article  Google Scholar 

  261. Huang, C.A., Chen, Y.C., Chang, J.H.: The electrochemical polishing behavior of the Inconel 718 alloy in perchloric–acetic mixed acids. Corros. Sci. 50(2), 480–489 (2008)

    Article  Google Scholar 

  262. Klocke, F., Zeis, M., Herrig, T., Harst, S., Klink, A.: Optical in situ measurements and interdisciplinary modeling of the electrochemical sinking process of Inconel 718. Procedia CIRP 24, 114–119 (2014)

    Article  Google Scholar 

  263. Wang, D., Zhu, Z., Wang, N., Zhu, D., Wang, H.: Investigation of the electrochemical dissolution behavior of Inconel 718 and 304 stainless steel at low current density in NaNO3 solution. Electrochim. Acta 156, 301–307 (2015)

    Article  Google Scholar 

  264. Escobar-Palafox, G.A., Gault, R.S., Ridgway, K.: Characterisation of abrasive water-jet process for pocket milling in Inconel 718. Procedia CIRP 1, 404–408 (2012)

    Article  Google Scholar 

  265. Çaydaş, U., Hasçalık, A.: A study on surface roughness in abrasive waterjet machining process using artificial neural networks and regression analysis method. J. Mater. Process. Technol. 202(1–3), 574–582 (2008)

    Article  Google Scholar 

  266. Axinte, D.A., Karpuschewski, B., Kong, M.C., Beaucamp, A.T., Anwar, S., Miller, D., Petzel, M.: High energy fluid jet machining (HEFJet-Mach): from scientific and technological advances to niche industrial applications. CIRP Ann. Manuf. Technol. 63(2), 751–771 (2014)

    Article  Google Scholar 

  267. Hashish, M.: Optimization factors in abrasive-waterjet machining. J. Manuf. Sci. Eng. 113(1), 29–37 (1991)

    Article  Google Scholar 

  268. Sadasivam, B., Hizal, A., Park, S., Arola, D.: An evaluation of abrasive waterjet peening with elastic prestress. J. Manuf. Sci. Eng. 131(1), 011010 (2009)

    Article  Google Scholar 

  269. Yünlü, L., Çolak, O., Kurbanoğlu, C.: Taguchi DOE analysis of surface integrity for high pressure jet assisted machining of Inconel 718. Procedia CIRP 13, 333–338 (2014)

    Article  Google Scholar 

  270. Hsu, C.Y., Lin, Y.Y., Lee, W.S., Lo, S.P.: Machining characteristics of Inconel 718 using ultrasonic and high temperature-aided cutting. J. Mater. Process. Technol. 198(1–3), 359–365 (2008)

    Article  Google Scholar 

  271. Liao, Y.S., Chen, Y.C., Lin, H.M.: Feasibility study of the ultrasonic vibration assisted drilling of Inconel superalloy. Int. J. Mach. Tools Manuf. 47(12–13), 1988–1996 (2007)

    Article  Google Scholar 

  272. Bhaduri, D., Soo, S.L., Novovic, D., Aspinwall, D.K., Harden, P., Waterhouse, C., Bohr, S., Mathieson, A.C., Lucas, M.: Ultrasonic assisted creep feed grinding of Inconel 718. Procedia CIRP 6, 615–620 (2013)

    Article  Google Scholar 

  273. Brehl, D.E., Dow, T.A.: Review of vibration-assisted machining. Precis. Eng. 32(3), 153–172 (2008)

    Article  Google Scholar 

  274. Mitrofanov, A.V., Ahmed, N., Babitsky, V.I., Silberschmidt, V.V.: Effect of lubrication and cutting parameters on ultrasonically assisted turning of Inconel 718. J. Mater. Process. Technol. 162–163, 649–654 (2005)

    Article  Google Scholar 

  275. Leshock, C.E., Kim, J.-N., Shin, Y.C.: Plasma enhanced machining of Inconel 718: modeling of workpiece temperature with plasma heating and experimental results. Int. J. Mach. Tools Manuf. 41(6), 877–897 (2001)

    Article  Google Scholar 

  276. García Navas, V., Arriola, I., Gonzalo, O., Leunda, J.: Mechanisms involved in the improvement of Inconel 718 machinability by laser assisted machining (LAM). Int. J. Mach. Tools Manuf. 74, 19–28 (2013)

    Google Scholar 

  277. Abdul Aleem, B.J., Hashmi, Yilbas, B.S.: Laser controlled melting of pre-prepared Inconel 718 alloy surface. Opt. Lasers Eng. 49(11), 1314–1319 (2011)

    Google Scholar 

  278. Yilbas, B.S., Akhtar, S.S., Karatas, C.: Laser surface treatment of Inconel 718 alloy: thermal stress analysis. Opt. Lasers Eng. 48(7–8), 740–749 (2010)

    Article  Google Scholar 

  279. Pusavec, F., Hamdi, H., Kopac, J., Jawahir, I.S.: Surface integrity in cryogenic machining of nickel based alloy—Inconel 718. J. Mater. Process. Technol. 211(4), 773–783 (2011)

    Article  Google Scholar 

  280. Tam, S.C., Yeo, C.Y., Jana, S., Lau, M.W.S., Lim, L.E.N., Yang, L.J., Noor, Y.M.: Optimization of laser deep-hole drilling of Inconel 718 using the Taguchi method. J. Mater. Process. Technol. 37(1–4), 741–757 (1993)

    Article  Google Scholar 

  281. Ahn, D.-G., Byun, K.-W.: Influence of cutting parameters on surface characteristics of cut section in cutting of Inconel 718 sheet using CW Nd:YAG laser. Trans. Nonferrous Met. Soc. China 19(Supplement 1), s32–s39 (2009)

    Article  Google Scholar 

  282. Hasçalık, A., Ay, M.: CO2 laser cut quality of Inconel 718 nicklel—based superalloy. Opt. Laser Technol. 48, 554–564 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The project was financially supported by King Saud University, Vice Deanship of Research Chairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saied Darwish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Darwish, S., Ahmed, N., Alahmari, A.M. (2016). Laser Beam Machining, Laser Beam Hybrid Machining, and Micro-channels Applications and Fabrication Techniques. In: Öchsner, A., Altenbach, H. (eds) Machining, Joining and Modifications of Advanced Materials . Advanced Structured Materials, vol 61. Springer, Singapore. https://doi.org/10.1007/978-981-10-1082-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1082-8_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1081-1

  • Online ISBN: 978-981-10-1082-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics