Skip to main content

The Research on Four-Dimensional Water Vapor Tomography Based on Real-Time PPP Technique

  • Conference paper
  • First Online:
China Satellite Navigation Conference (CSNC) 2016 Proceedings: Volume I

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 388))

  • 1761 Accesses

Abstract

With the development of International GNSS Service (IGS) real-time pilot project (RTPP) acquiring precipitable water vapor (PWV) with high accuracy has become a reality based on the real-time precise point pointing (RT-PPP) technique. The accuracy of zenith total delay (ZTD) and PWV derived from RT-PPP have been validated using observed global positioning system (GPS) data and meteorology data from Satellite Positioning Reference Station Network (SatRef) in 2014. The ZTD comparison with that from afterwards PPP and GAMIT software shows that the relative coefficients are 0.9786 and 0.9687, respectively. The PWV comparison with that from radiosonde shows that the relative coefficient and RMS are 0.9512 and 2.13 mm, respectively. It is a clear evidence that the RT-PPP technique has a similar accuracy with the result calculated using afterwards IGS products. However, PWV is mean of water vapor information of many GNSS signal rays during a period of time over the station, which cannot reflect the three-dimensional water vapor distribution. Slant water vapor (SWV) can be obtained by mapping PWV at different elevation and azimuth angles. The tomographic experiment has been performed using SWVs of twelve stations from SatRef as tomographic observation and compared with result from radiosonde. The comparison shows a good agreement and the RMS, SD, Bias, and MAE of integrated water vapor (IWV) are 3.60, 2.78, 2.29, and 2.92 mm, respectively, the root mean square (RMS), standard deviation (SD), Bias, and mean absolute error (MAE) of calculated water vapor density are 1.08, 1.03, −0.21, and 0.77 g/m3, respectively. The above result makes it possible that acquiring the real-time three-dimensional water vapor distribution using tomography approach with SWVs derived from RT-PPP technique, which has an important influence on short-term disastrous weather and now-casting precipitation forecasting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bastin S, Champollion C, Bock O, Drobinski P, Masson F (2005) On the use of GPS tomography to investigate water vapor variability during a Mistral/sea breeze event in southeastern France. Geophys Res Lett 32(5)

    Google Scholar 

  2. Lutz SL (2008) High-resolution GPS tomography in view of hydrological hazard assessment. Doctoral dissertation, Diss., Eidgenössische Technische Hochschule ETH Zürich, Nr. 17675

    Google Scholar 

  3. Champollion C, Flamant C, Bock O, Masson F, Turner DD, Weckwerth T (2009) Mesoscale GPS tomography applied to the 12 June 2002 convective initiation event of IHOP 2002. QJR Meteorol Soc 135:645–662

    Article  Google Scholar 

  4. Jiang P, Ye SR, Liu YY, Zhang JJ, Xia PF (2014) Near real-time water vapor tomography using ground-based GPS and meteorological data: long-term experiment in Hong Kong. In: Annales Geophysicae, vol 32(8). Copernicus GmbH, pp 911–923

    Google Scholar 

  5. Adavi Z, Mashhadi-Hossainali M (2014) 4D tomographic reconstruction of the tropospheric wet refractivity using the concept of virtual reference station, case study: northwest of Iran. Meteorol Atmos Phys 126(3–4):193–205

    Article  Google Scholar 

  6. Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res Solid Earth (1978–2012) 102(B3):5005–5017

    Google Scholar 

  7. Dow JM, Neilan RE, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geod 83(3–4):191–198

    Article  Google Scholar 

  8. Caissy M, Agrotis L, Weber G, Hernandez-Pajares M, Hugentobler U (2012) Coming soon: the International GNSS real-time service. GPS World 23(6):52–58

    Google Scholar 

  9. Li X, Zhang X, Ge M (2011) Regional reference network augmented precise point positioning for instantaneous ambiguity resolution. J Geod 85(3):151–158

    Article  Google Scholar 

  10. Li X, Ge M, Zhang H, Nischan T, Wickert J (2013) The GFZ real-time GNSS precise positioning service system and its adaption for COMPASS. Adv Space Res 51(6):1008–1018

    Article  Google Scholar 

  11. Li X, Dick G, Ge M, Heise S, Wickert J, Bender M (2014) Real-time GPS sensing of atmospheric water vapor: precise point positioning with orbit, clock, and phase delay corrections. Geophys Res Lett 41(10):3615–3621

    Article  Google Scholar 

  12. Dousa J, Vaclavovic P (2014) Real-time zenith tropospheric delays in support of numerical weather prediction applications. Adv Space Res 53(9):1347–1358

    Article  Google Scholar 

  13. Haase J, Ge M, Vedel H, Calais E (2003) Accuracy and variability of GPS tropospheric delay measurements of water vapor in the western Mediterranean. J Appl Meteorol 42(11):1547–1568

    Article  Google Scholar 

  14. Gendt G, Dick G, Reigber C, Tomassini M, Liu Y, Ramatschi M (2004) Near real time GPS water vapor monitoring for numerical weather prediction in Germany. J Meteorol Soc Jpn 82(1B):361–370

    Article  Google Scholar 

  15. Lu C, Li X, Nilsson T, Ning T, Heinkelmann R, Ge M, Schuh H (2015). Real-time retrieval of precipitable water vapor from GPS and BeiDou observations. J Geod 1–14

    Google Scholar 

  16. Flores A, Ruffini G, Rius A (2000) 4D tropospheric tomography using GPS slant wet delays. In: Proceedings of Annales Geophysicae, vol 18(2). Springer, Heidelberg, pp 223–234

    Google Scholar 

  17. Emanuel K, Raymond D, Betts A, Bosart L, Bretherton C, Droegemeier K, Thorpe A (1995) Report of the first prospectus development team of the US weather research-program to NOAA and the NSF

    Google Scholar 

  18. Bauer HS, Wulfmeyer V, Schwitalla T, Zus F, Grzeschik M (2011) Operational assimilation of GPS slant path delay measurements into the MM5 4DVAR system. Tellus A 63(2):263–282

    Article  Google Scholar 

  19. Chen B, Liu Z (2014) Voxel-optimized regional water vapor tomography and comparison with radiosonde and numerical weather model. J Geod 88(7):691–703

    Article  Google Scholar 

  20. Yuan Y, Zhang K, Rohm W, Choy S, Norman R, Wang CS (2014) Real-time retrieval of precipitable water vapor from GPS precise point positioning. J Geophys Res Atmos 119(16):10044–10057

    Article  Google Scholar 

  21. Niell AE (2001) Preliminary evaluation of atmospheric mapping functions based on numerical weather models. Phys Chem Earth Part A 26(6):475–480

    Article  Google Scholar 

  22. Tregoning P, Herring TA (2006) Impact of a priori zenith hydrostatic delay errors on GPS estimates of station heights and zenith total delays. Geophys Res Lett 33(23)

    Google Scholar 

  23. Saastamoinen J (1972). Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. Use Artif Satell Geod 247–251

    Google Scholar 

  24. Bevis M, Businger S, Chiswell S, Herring TA, Rocken C, Ware RH (1994) GPS meteorology: mapping zenith wet delays onto precipitable water. J Appl Meteorol 33:379–386

    Article  Google Scholar 

  25. Benevides P, Catalao J, Miranda PMA (2015) On the inclusion of GPS precipitable water vapour in the nowcasting of rainfall

    Google Scholar 

  26. Bevis M, Businger S, Herring T, Rocken C, Anthes R, Ware R (1992) GPS meteorology: remotesensing of atmospheric water vapor using the global positioningsystem. J Geophys Res 97(D14):15787–15801

    Article  Google Scholar 

  27. Mendes VB (1999) Modeling the neutral-atmosphere propagation delay in radiometric space technique. PhD dissertation, University of New Brunswick, Frederiction, New Brunswick

    Google Scholar 

  28. Bender M, Stosius R, Zus F, Dick G, Wickert J, Rabe A (2010) GNSS water vapor tomography-Expected improvements by combing GPS, GLONASS and Galileo observations. Adv Sp Res 47:886–897

    Article  Google Scholar 

  29. Bender M, Dick G, Ge M, Deng Z, Wickert J, Kahle HG, Tetzlaff G (2011) Development of a GNSS watervapour tomographysystem using algebraic reconstruction techniques. Adv Sp Res 47:1704–1720. doi:10.1016/j.asr.2010.05.034

    Article  Google Scholar 

  30. Song SL, Zhu YW, Ding JC et al (2005) Shanghai GPS network tomography vapor three-dimensional distribution to improve numerical forecast humidity field. J Chin Sci Bull 50(20):2271–2277

    Google Scholar 

  31. Elósegui P, Ruis A, Davis JL, Ruffini G, Keihm SJ, Bürki B, Kruse LP (1998) An experiment for estimation of the spatial and temporal variations of water vapor using GPS data. Phys Chem Earth 23(1):125–130

    Article  Google Scholar 

  32. Adeyemi B, Joerg S (2012) Analysis of water vapor over nigeria using radiosonde and satellite data. J Appl Meteorol Climatol 51:1855–1866. doi:10.1175/JAMC-D-11-0119.1

    Article  Google Scholar 

  33. Liu ZZ, Wong MS, Nichol J, Chan PW (2013) A multi-sensor study of water vapour from radiosonde, MODIS and AERONET: a case study of Hong Kong. Int J Climatol 33:109–120. doi:10.1002/joc.3412

    Article  Google Scholar 

  34. Gusfarienza H, Yuwono BD, Awaluddin M et al (2015) Penentuan zenith tropospheric delay dan precipitable water vapor Menggunakan Perangkat Lunak Gamit. Jurnal Geodesi Undip 4(2):78–86

    Google Scholar 

  35. Seco A, Ramírez F, Serna E, Prieto E, García R, Moreno A, Priego JE (2012) Rain pattern analysis and forecast model based on GPS estimated atmospheric water vapor content. Atmos Environ 49:85–93

    Article  Google Scholar 

  36. de Ortiz Galisteo JP, Bennouna Y, Toledano C, Cachorro V, Romero P, Andrés MI, Torres B (2014) Analysis of the annual cycle of the precipitable water vapour over Spain from 10-year homogenized series of GPS data. Q J R Meteorol Soc 140(679):397–406

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank IGAR for providing access to the web-based IGAR data. The Lands Department of HKSAR is also acknowledged for providing GPS data from the Hong Kong Satellite Positioning Reference Station Network (SatRef) and meteorological data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingzhi Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this paper

Cite this paper

Zhao, Q., Yao, Y., Xu, C. (2016). The Research on Four-Dimensional Water Vapor Tomography Based on Real-Time PPP Technique. In: Sun, J., Liu, J., Fan, S., Wang, F. (eds) China Satellite Navigation Conference (CSNC) 2016 Proceedings: Volume I. Lecture Notes in Electrical Engineering, vol 388. Springer, Singapore. https://doi.org/10.1007/978-981-10-0934-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0934-1_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0933-4

  • Online ISBN: 978-981-10-0934-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics