Skip to main content

Crosstalk Modeling with Width Dependent MFP in MLGNR Interconnects Using FDTD Technique

  • Chapter
  • First Online:
Crosstalk in Modern On-Chip Interconnects

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

This chapter analyzes the performance of coupled MLGNR interconnects using the FDTD technique. In a more realistic manner, the proposed model incorporates the width dependent MFP parameter of the MLGNR while taking into account the edge roughness. This helps in accurate estimation of the crosstalk-induced performance in comparison to the conventional models. The crosstalk noise is comprehensively analyzed by examining both functional and dynamic crosstalk effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rabaey JM, Chandrakasan A, Nikolic B (2003) Digital integrated circuits: a design perspective, 2nd edn. Prentice-Hall, New Jersey

    Google Scholar 

  2. Mezhiba AV, Friedman EG (2002) Inductive properties of high-performance power distribution grids. IEEE Trans Very Large Scale Integr (VLSI) Syst 10(6):762–776

    Article  Google Scholar 

  3. Yi M, Swaminathan M, Qian Z, Aydiner A (2012) Skin effect modeling of interconnects using the Laguerre-FDTD scheme. In: Proceedings of 21st conference on electrical performance of electronic packaging and systems (EPEPS), Tempe, pp 236–239

    Google Scholar 

  4. Kumar VR, Kaushik BK, Patnaik A (2015) Crosstalk modeling with width dependent MFP in MLGNR interconnects using FDTD technique. In: Proceedings of IEEE conference on electron devices and solid-state circuits, Singapore, pp 138–141

    Google Scholar 

  5. Kumar VR, Kaushik BK, Patnaik A (2014) Modeling of crosstalk effects in coupled MLGNR interconnects based on FDTD method. In: Proceedings of IEEE electronic components and technology conference (ECTC), Florida, USA, pp 1091–1097

    Google Scholar 

  6. Naeemi A, Meindl JD (2008) Electron transport modeling for junctions of zigzag and armchair graphene nanoribbons (GNRs). IEEE Electron Device Lett 29(5):497–499

    Article  Google Scholar 

  7. Stan MR, Unluer D, Ghosh A, Tseng F (2009) Graphene devices, interconnect and circuits—challenges and opportunities. In: Proceedings on IEEE international symposium on circuits and systems (ISCAS), Taipei, 24–27 May 2009, pp 69–72

    Google Scholar 

  8. Xu C, Li H, Banerjee K (2009) Modeling, analysis, and design of graphene nanoribbon interconnects. IEEE Trans Electron Devices 56(8):1567–1578

    Article  Google Scholar 

  9. Li H, Xu C, Srivastava N, Banerjee K (2009) Carbon nanomaterials for next-generation interconnects and passives: physics, status and prospects. IEEE Trans Electron Devices 56(9):1799–1821

    Article  Google Scholar 

  10. Kumar P, Singh A, Garg A, Sharma R (2013) Compact models for transient analysis of single-layer graphene nanoribbon interconnects. In: Proceedings of IEEE international conference on computer modelling and simulation (UKSim2013), Cambridge, 2013, pp 809–814

    Google Scholar 

  11. Xu C, Li H, Banerjee K (2008) Graphene nano-ribbon (GNR) interconnects: a genuine contender or a delusive dream?In: Proceedings of IEEE international electron devices meeting (IEDM 2008), San Francisco, CA, USA, 2008, pp 1–4

    Google Scholar 

  12. Moon JS, Gaskill DK (2011) Graphene: its fundamentals to future applications. IEEE Trans Microw Theory Tech 59(10):2702–2708

    Article  Google Scholar 

  13. Zhao W-S, Yin W-Y (2014) Comparative study on multilayer graphene nanoribbon (MLGNR) interconnects. IEEE Trans Electromagn Compat 56(3):638–645

    Article  Google Scholar 

  14. Cui J, Zhao W, Yin W, Hu J (2012) Signal transmission analysis of multilayer graphene nano-ribbon (MLGNR) interconnects. IEEE Trans Electromagn Compat 54(1):126–132

    Article  Google Scholar 

  15. Avouris P (2010) Graphene: electronic and photonic properties and devices. Nano Lett 10(11):4285–4294

    Article  Google Scholar 

  16. Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, Heer WA (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312(5777):1191–1196

    Article  Google Scholar 

  17. Naeemi A, Meindl JD (2007) Conductance modeling for graphene nanoribbon (GNR) interconnects. IEEE Electron Device Lett 28(5):428–431

    Article  Google Scholar 

  18. Nasiri SH, Faez R, Moravvej-Farshi MK (2012) Compact formulae for number of conduction channels in various types of grapheme nanoribbons at various temperatures. Mod Phys Lett B 26(1):1150004-1–115004-5

    Google Scholar 

  19. Sakurai T, Newton AR (1991) A simple MOSFET model for circuit analysis. IEEE Trans Electron Devices 38(4):887–894

    Article  Google Scholar 

  20. Kumar VR, Kaushik BK, Patnaik A (2014) An accurate FDTD model for crosstalk analysis of CMOS-gate-driven coupled RLC interconnects. IEEE Trans Electromagn Compat 56(5):1185–1193

    Article  Google Scholar 

  21. Zhang J, Friedman EG (2006) Crosstalk modeling for coupled RLC interconnects with application to shield insertion. IEEE Trans VLSI Syst 14(6):641–646

    Article  Google Scholar 

  22. Bandyopadhyay T, Han KJ, Chung D, Chatterjee R, Swaminathan M, Tummala R (2011) Rigorous electrical modeling of through silicon vias (TSV) for MOS capacitance effects. IEEE Trans Compon Packag Manuf Technol 1(6):893–903

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brajesh Kumar Kaushik .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Kaushik, B.K., Kumar, V.R., Patnaik, A. (2016). Crosstalk Modeling with Width Dependent MFP in MLGNR Interconnects Using FDTD Technique. In: Crosstalk in Modern On-Chip Interconnects. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-0800-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0800-9_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0799-6

  • Online ISBN: 978-981-10-0800-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics