Skip to main content

FDTD Model for Crosstalk Analysis of Multiwall Carbon Nanotube (MWCNT) Interconnects

  • Chapter
  • First Online:
Crosstalk in Modern On-Chip Interconnects

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 603 Accesses

Abstract

This chapter introduces an equivalent single conductor (ESC) model of MWCNT interconnects. Based on the ESC model, this chapter presents an accurate FDTD model of MWCNT while incorporating the quantum effects of nanowire and nonlinear effects of CMOS driver. To reduce the computational effort required for analyzing the CMOS driver, a simplified but accurate model is employed named as modified alpha-power law model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D’Amore M, Sarto MS, Tamburrano A (2010) Fast transient analysis of next-generation interconnects based on carbon nanotubes. IEEE Trans Electromagn Compat 52(2):496–503

    Article  Google Scholar 

  2. Li H, Xu C, Srivastava N, Banerjee K (2009) Carbon nanomaterials for next-generation interconnects and passives: physics, status and prospects. IEEE Trans Electron Devices 56(9):1799–1821

    Article  Google Scholar 

  3. Sahoo M, Rahaman H (2013) Modeling of crosstalk delay and noise in single-walled carbon nanotube bundle interconnects. In: Proceedings of annual IEEE india conference (INDICON 2013), Mumbai, India, pp 1–6

    Google Scholar 

  4. Das D, Rahaman H (2010) Timing analysis in carbon nanotube interconnects with process, temperature, and voltage variations. In: Proceedings of IEEE international symposium electronic design (ISED 2010), Bhubaneshwar, India, pp 27–32

    Google Scholar 

  5. McEuen PL, Fuhrer MS, Park H (2002) Single-walled carbon nanotube electronics. IEEE Trans Nanotechnol 1(1):78–85

    Article  Google Scholar 

  6. Naeemi A, Meindl JD (2009) Carbon nanotube interconnects. Annu Rev Mater Res 39(1):255–275

    Article  Google Scholar 

  7. Li HJ, Lu WG, Li JJ, Bai XD, Gu CZ (2005) Multichannel ballistic transport in multiwall carbon nanotubes. Phys Rev Lett 95(8):86601

    Google Scholar 

  8. Sarto MS, Tamburrano A (2010) Single conductor transmission-line model of multiwall carbon nanotubes. IEEE Trans Nanotechnol 9(1):82–92

    Article  Google Scholar 

  9. Li H, Yin WY, Banerjee K, Mao JF (2008) Circuit modeling and performance analysis of multi-walled carbon nanotube interconnects. IEEE Trans Electron Devices 55(6):1328–1337

    Article  Google Scholar 

  10. Tang M, Lu J, Mao J (2012) Study on equivalent single conductor model of multi-walled carbon nanotube interconnects. In: proceedings of IEEE Asia pacific microwave conference, Taiwan, pp 1247–1249

    Google Scholar 

  11. Paul CR (2008) Analysis of multiconductor transmission lines. IEEE Press

    Google Scholar 

  12. Paul CR (1994) Incorporation of terminal constraints in the FDTD analysis of transmission lines. IEEE Trans Electromagn Compat 36(2):85–91

    Article  Google Scholar 

  13. Paul CR (1996) Decoupling the multi conductor transmission line equations. IEEE Trans Microw Theory Tech 44(8):1429–1440

    Google Scholar 

  14. Liang F, Wang G, Lin H (2012) Modeling of crosstalk effects in multiwall carbon nanotube interconnects. IEEE Trans Electromagn Compat 54(1):133–139

    Article  Google Scholar 

  15. Xu T, Wang Z, Miao J, Chen X, Tan CM (2007) Aligned carbon nanotubes for through-wafer interconnects. Appl Phys Letts 91(4):042108-1–042108-3

    Google Scholar 

  16. Wang Z, Chen X, Zhang J, Tang N, Cai J (2013) Fabrication of sensor based on MWCNT for NO2 and NH3 detection. In: Proceedings of IEEE Conference on Nanotechnology, Beijing, pp 2202–2214

    Google Scholar 

  17. Srivastava A, Xu Y, Sharma AK (2010) Carbon nanotubes for next generation very large scale integration interconnects. J Nanophotonics 4(1):1–26

    Article  Google Scholar 

  18. Xu Y, Srivastava A (2009) A model for carbon nanotube interconnects. Int J Circuit Theory Appl 38(6):559–575

    MATH  Google Scholar 

  19. Somvanshi D, Jit S (2014) Effect of ZnO Seed layer on the electrical characteristics of Pd/ZnO thin film based Schottky contacts grown on n-Si substrates. IEEE Trans Nanotechnol 13(6):1138–1144

    Article  Google Scholar 

  20. Burke PJ (2002) Lüttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes. IEEE Trans Nanotechnol 1(3):129–144

    Article  Google Scholar 

  21. Park JY, Rosenblatt S, Yaish Y, Sazonova V, Üstünel H, Braig S, Arias TA, Brouwer PW, McEuen PL (2004) Electron—phonon scattering in metallic single-walled carbon nanotubes. Nano Lett 4(3):517–520

    Article  Google Scholar 

  22. Harris PJF (1999) Carbon nanotubes and relayed structures: new materials for 21st century. Press syndicate of the university of cambridge, Cambridge, United Kingdom

    Book  Google Scholar 

  23. Collins PG, Hersam M, Arnold M, Martel R, Avouris Ph (2001) Current saturation and electrical breakdown in multiwalled carbon nanotubes. Phys Rev Lett 86(14):3128–3131

    Article  Google Scholar 

  24. Li H, Banerjee K (2009) High-frequency analysis of carbon nanotube interconnects and implications for on-chip inductor design. IEEE Trans Electron Devices 56(10):2202–2214

    Article  Google Scholar 

  25. Naeemi A, Meindl JD (2007) Physical modeling of temperature coefficient of resistance for single- and multi-wall carbon nanotube interconnects. IEEE Electron Device Lett 28(2):135–138

    Article  Google Scholar 

  26. Naeemi A, Meindl JD (2008) Performance modeling for single- and multiwall carbon nanotubes as signal and power interconnects in gigascale systems. IEEE Trans Electron Devices 55(10):2574–2582

    Article  Google Scholar 

  27. Maffucci A, Miano G, Villone F (2009) A new circuit model for carbon nanotube interconnects with diameter-dependent parameters. IEEE Trans Nanotechnol 8(3):345–354

    Article  Google Scholar 

  28. Nieuwoudt A, Massoud Y (2006) Evaluating the impact of resistance in carbon nanotube bundles for VLSI interconnect using diameter-dependent modeling techniques. IEEE Trans Electron Devices 53(10):2460–2466

    Article  Google Scholar 

  29. Kim W, Javey A, Tu R, Cao J, Wang Q, Dai H (2005) Electrical contacts to carbon nanotubes down to 1 nm in diameter. Appl Phys Lett 87(17):173101

    Article  Google Scholar 

  30. Nieuwoudt A, Massoud Y (2006) Understanding the impact of inductance in carbon nanotube bundles for VLSI interconnect using scalable modeling techniques. IEEE Trans Nanotechnol 5(6):758–765

    Article  Google Scholar 

  31. Nieuwoudt A, Massoud Y (2007) Performance implications of inductive effects for carbon-nanotube bundle interconnect. IEEE Electron Device Lett 28(4):305–307

    Article  Google Scholar 

  32. Raychowdhury A, Roy K (2006) Modeling of metallic carbon-nanotube interconnects for circuit simulations and a comparison with Cu interconnects for scaled technologies. IEEE Trans Comput Aided Des Integr Circ Syst 25(1):58–65

    Article  Google Scholar 

  33. Courant R, Friedrichs K, Lewy H (1967) On the partial difference equations of mathematical physics. IBM J Res Devel 11(2):215–234

    Article  MathSciNet  MATH  Google Scholar 

  34. Rabaey JM, Chandrakasan A, Nikolic B (2003) Digital integrated circuits: a design perspective, 2nd edn. Prentice-Hall, New Jersey

    Google Scholar 

  35. International Technology Roadmap for Semiconductors (2013) http://public.itrs.net (Online)

  36. Agrawal S, Raghuveer MS, Ramprasad R, Ramanath G (2007) Multishell carrier transport in multiwalled carbon nanotubes. IEEE Trans Nanotechnol 6(6):722–726

    Article  Google Scholar 

  37. Nieuwoudt A, Massoud Y (2008) On the optimal design, performance, and reliability of future carbon nanotube-based interconnect solutions. IEEE Trans Electron Devices 55(8):2097–2110

    Article  Google Scholar 

  38. Maffucci A, Miano G, Villone F (2008) Performance comparison between metallic carbon nanotube and copper nano-interconnects. IEEE Trans Adv Packag 31(4):692–699

    Article  MATH  Google Scholar 

  39. Fathi D, Forouzandeh B, Mohajerzadeh S, Sarvari R (2009) Accurate analysis of carbon nanotube interconnects using transmission line model. Micro Nano Lett 4(2):116–121

    Article  Google Scholar 

  40. Lim SC, Jang JH, Bae DJ, Han GH, Lee S, Yeo IS, Lee YH (2009) Contact resistance between metal and carbon nanotube interconnects: effect of work function and wettability. Appl Phys Lett 95(26):264103-1–264103-3

    Google Scholar 

  41. Koo KH, Cho H, Kapur P, Saraswat KC (2007) Performance comparison between carbon nanotubes, optical and Cu for future high-performance on-chip interconnect applications. IEEE Trans Electron Devices 54(12):3206–3215

    Google Scholar 

  42. Bellucci S, Onorato P (2010) The role of the geometry in multiwall carbon nanotube interconnects. J Appl Phys 108(7):073704-1–073704-9

    Google Scholar 

  43. Rossi D, Cazeaux JM, Metra C, Lombardi F (2007) Modeling crosstalk effects in CNT bus architecture. IEEE Trans Nanotechnol 6(2):133–145

    Article  Google Scholar 

  44. Kumar VR, Kaushik BK, Patnaik A (2015) Crosstalk noise modeling of multiwall carbon nanotube (MWCNT) interconnects using finite-difference time-domain (FDTD) technique. Microelectron Reliab 55(1):155–163

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brajesh Kumar Kaushik .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Kaushik, B.K., Kumar, V.R., Patnaik, A. (2016). FDTD Model for Crosstalk Analysis of Multiwall Carbon Nanotube (MWCNT) Interconnects. In: Crosstalk in Modern On-Chip Interconnects. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-0800-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0800-9_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0799-6

  • Online ISBN: 978-981-10-0800-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics