Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 235 Accesses

Abstract

Study of exotic hadrons, which cannot be interpreted as ordinary three-quark baryons or quark-antiquark mesons, would offer us a good opportunity to investigate low-energy quark dyanmics. The pentaquark \(\varTheta ^+\) has a strangeness quantum number \(S=+1\) with its minimal quark configuration of \(uudd\bar{s}\). The distinct features of the \(\varTheta ^+\) are a light mass of about 1540 MeV and a narrow width of a few MeV or less. If such an exotic pentaquark exits, it is quite interesting from a viewpoint of the hadron structure. Many experiments searched for the \(\varTheta ^+\) so far, but the experimental situation was still controversial. For further investigation, a high-statistics and high-resolution experiment has been required. In this chapter, both theoretical and experimental studies of the \(\varTheta ^+\) pentaquark are reviewed. The present experiment is introduced in the last section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The reanalysis of SAPHIR is found in [53] leading the same result.

  2. 2.

    The latest DIANA result before 2012 was \(\varGamma _{\varTheta }=0.39\pm 0.10\) MeV [17].

References

  1. M. Gell-Mann, Phys. Lett. 8, 214 (1964)

    Article  ADS  Google Scholar 

  2. R.L. Jaffe, Proceedings of Topical Conference on Baryon Resonances (Oxford, 1976) SLAC-PUB-1774

    Google Scholar 

  3. R.L. Jaffe, Phys. Rev. D 15, 267, 281 (1977)

    Google Scholar 

  4. R.L. Jaffe, Phys. Rev. Lett. 38, 195, 617(E) (1977)

    Google Scholar 

  5. D. Strottman, Phys. Rev. D 20, 748 (1979)

    Article  ADS  Google Scholar 

  6. S. Godfrey, S.L. Olsen, Ann. Rev. Nucl. Part. Sci. 58, 51 (2008)

    Article  ADS  Google Scholar 

  7. D. Diakonov, V. Petrov, M. Polyakov, Z. Phys. A 359, 305 (1997)

    Article  ADS  Google Scholar 

  8. T. Nakano et al., LEPS Collaboration. Phys. Rev. Lett. 91, 012002 (2003)

    Article  ADS  Google Scholar 

  9. K.H. Hicks, Prog. Part. Nucl. Phys. 55, 647 (2005)

    Article  ADS  Google Scholar 

  10. K.H. Hicks, Eur. Phys. J. H 37, 1 (2012)

    Article  MathSciNet  Google Scholar 

  11. R. Jaffe, F. Wilczek, Eur. Phys. J. C 33, s38 (2004)

    Article  ADS  Google Scholar 

  12. S. Nussinov, arXiv:hep-ph/0307357

  13. R.A. Arndt, I.I. Strakovsky, R.L. Workman, Phys. Rev. C 68, 042201(R) (2003); 69, 019901(E) (2004)

    Google Scholar 

  14. J. Haidenbauer, G. Krein, Phys. Rev. C 68, 052201(R) (2003)

    Article  ADS  Google Scholar 

  15. A. Sibirtsev, J. Haidenbauer, S. Krewald, Ulf-G Meißner, Phys. Lett. B 599, 230 (2004)

    Google Scholar 

  16. R.N. Cahn, G.H. Trilling, Phys. Rev. D 69, 011501(R) (2004)

    Article  ADS  Google Scholar 

  17. V.V. Barmin et al., DIANA Collaboration. Phys. Atom. Nucl. 66, 1715 (2003); 70, 35 (2007); 73, 1168 (2010)

    Google Scholar 

  18. W.R. Gibbs, Phys. Rev. C 70, 045208 (2004)

    Article  ADS  Google Scholar 

  19. T. Bowen et al., Phys. Rev. D 2, 2599 (1970)

    Article  ADS  Google Scholar 

  20. F. Huang, Z.Y. Zhang, Y.W. Yu, B.S. Zou, Phys. Lett. B 586, 69 (2004)

    Article  ADS  Google Scholar 

  21. K. Goeke, H.-C. Kim, M. Praszałowicz, G.-S. Yang, Prog. Part. Nucl. Phys. 55, 350 (2005)

    Article  ADS  Google Scholar 

  22. R.L. Jaffe, Phys. Rep. 409, 1 (2005)

    Article  ADS  Google Scholar 

  23. R. Jaffe, F. Wilczek, Phys. Rev. Lett. 91, 232003 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  24. M. Karliner, H.J. Lipkin, Phys. Lett. B 575, 249 (2003)

    Article  ADS  Google Scholar 

  25. S. Sasaki, Nucl. Phys. B (Proc. Suppl.) 140, 127 (2005)

    Google Scholar 

  26. F. Csikor, Z. Fodor, S.D. Katz, T.G. Kovács, J. High Energy Phys. 11, 070 (2003)

    Article  ADS  Google Scholar 

  27. F. Csikor, Z. Fodor, S.D. Katz, T.G. Kovács, B.C. Tóth, Phys. Rev. D 73, 034506 (2006)

    Article  ADS  Google Scholar 

  28. S. Sasaki, Phys. Rev. Lett. 93, 152001 (2004)

    Article  ADS  Google Scholar 

  29. T.-W. Chiu, T.-H. Hsieh, Phys. Rev. D 72, 034505 (2005)

    Article  ADS  Google Scholar 

  30. N. Mathur et al., Phys. Rev. D 70, 074508 (2004)

    Article  ADS  Google Scholar 

  31. N. Ishii, T. Doi, H. Iida, M. Oka, F. Okiharu, H. Suganuma, Phys. Rev. D 71, 034001 (2005)

    Article  ADS  Google Scholar 

  32. N. Ishii, T. Doi, Y. Nemoto, M. Oka, H. Suganuma, Phys. Rev. D 72, 074503 (2005)

    Article  ADS  Google Scholar 

  33. B.G. Lasscock et al., Phys. Rev. D 72, 014502 (2005)

    Article  ADS  Google Scholar 

  34. B.G. Lasscock et al., Phys. Rev. D 72, 074507 (2005)

    Article  ADS  Google Scholar 

  35. T.T. Takahashi, T. Umeda, T. Onogi, T. Kunihiro, Phys. Rev. D 71, 114509 (2005)

    Article  ADS  Google Scholar 

  36. C. Alexandrou, A. Tsapalis, Phys. Rev. D 73, 014507 (2006)

    Article  ADS  Google Scholar 

  37. K. Holland, K.J. Juge, BGR Collaboration. Phys. Rev. D 73, 074505 (2006)

    Article  ADS  Google Scholar 

  38. M.V. Danilov, R.V. Mizuk, Phys. Atom. Nucl. 71, 605 (2008)

    Article  ADS  Google Scholar 

  39. S. Eidelman et al., Particle Data Group. Phys. Lett. B 592, 1 (2004)

    Article  ADS  Google Scholar 

  40. W.-M. Yao et al., Particle Data Group. J. Phys. G 33, 1 (2006)

    Article  ADS  Google Scholar 

  41. C. Amsler et al., Particle Data Group. Phys. Lett. B 667, 1 (2008)

    Article  ADS  Google Scholar 

  42. J. Barth et al., SAPHIR Collaboration. Phys. Lett. B 572, 127 (2003)

    Article  ADS  Google Scholar 

  43. S. Stepanyan et al., CLAS Collaboration. Phys. Rev. Lett. 91, 252001 (2003)

    Article  ADS  Google Scholar 

  44. V. Kubarovsky et al., CLAS Collaboration. Phys. Rev. Lett. 92, 032001 (2004)

    Article  ADS  Google Scholar 

  45. M. Battaglieri et al., CLAS Collaboration. Phys. Rev. Lett. 96, 042001 (2006)

    Article  ADS  Google Scholar 

  46. R. De Vita et al., CLAS Collaboration. Phys. Rev. D 74, 032001 (2006)

    Article  ADS  Google Scholar 

  47. B. McKinnon et al., CLAS Collaboration. Phys. Rev. Lett. 96, 212001 (2006)

    Article  ADS  Google Scholar 

  48. S. Niccolai et al., CLAS Collaboration. Phys. Rev. Lett. 97, 032001 (2006)

    Article  ADS  Google Scholar 

  49. T. Nakano et al., LEPS Collaboration. Phys. Rev. C 79, 025210 (2009)

    Article  ADS  Google Scholar 

  50. M.J. Amaryan et al., Phys. Rev. C 85, 035209 (2012)

    Article  ADS  Google Scholar 

  51. A. Martínez Torres, E. Oset, Phys. Rev. Lett. 105, 092001 (2010); Phys. Rev. C 81, 055202 (2010)

    Google Scholar 

  52. Y. Kato, LEPS Collaboration. Few-Body Syst. 54, 1245 (2013)

    Article  ADS  Google Scholar 

  53. M. Ostrick, Prog. Part. Nucl. Phys. 55, 337 (2005)

    Article  ADS  Google Scholar 

  54. S.-I. Nam, A. Hosaka, H.-C. Kim, Phys. Lett. B 633, 483 (2006)

    Article  ADS  Google Scholar 

  55. M. Anghinolfi et al., Phys. Rev. C 86, 069801 (2012)

    Article  ADS  Google Scholar 

  56. V.V. Barmin et al., DIANA Collaboration. Phys. Rev. C 89, 045204 (2014)

    Article  ADS  Google Scholar 

  57. R. Mizuk et al., Belle Collaboration. Phys. Lett. B 632, 173 (2006)

    Article  ADS  Google Scholar 

  58. J. Beringer et al., Particle Data Group. Phys. Rev. D 86, 010001 (2012)

    Article  ADS  Google Scholar 

  59. A.E. Asratyan, A.G. Dolgolenko, M.A. Kubantsev, Phys. Atom. Nucl. 67, 682 (2004)

    Article  ADS  Google Scholar 

  60. A. Airapetian et al., HERMES Collaboration. Phys. Lett. B 585, 213 (2004)

    Article  ADS  Google Scholar 

  61. S. Chekanov et al., ZEUS Collaboration. Phys. Lett. B 591, 7 (2004)

    Article  ADS  Google Scholar 

  62. A. Aktas et al., H1 Collaboration. Phys. Lett. B 639, 202 (2006)

    Article  ADS  Google Scholar 

  63. J.Z. Bai et al., BES Collaboration. Phys. Rev. D 70, 012004 (2004)

    Article  ADS  Google Scholar 

  64. S. Schael et al., ALEPH Collaboration. Phys. Lett. B 599, 1 (2004)

    Article  ADS  Google Scholar 

  65. J. Abdallah et al., DELPHI Collaboration. Phys. Lett. B 653, 151 (2007)

    Article  ADS  Google Scholar 

  66. B. Aubert et al., BaBar Collaboration. Phys. Rev. Lett. 95, 042002 (2005)

    Article  ADS  Google Scholar 

  67. M.-Z. Wang et al., Belle Collaboration. Phys. Lett. B 617, 141 (2005)

    Article  ADS  Google Scholar 

  68. B. Aubert et al., BaBar Collaboration. Phys. Rev. D 76, 092004 (2007)

    Article  ADS  Google Scholar 

  69. P. Achard et al., L3 Collaboration. Eur. Phys. J. C 49, 395 (2007)

    Article  ADS  Google Scholar 

  70. J.M. Link et al., FOCUS Collaboration. Phys. Lett. B 639, 604 (2006)

    Article  ADS  Google Scholar 

  71. O. Samoylov et al., NOMAD Collaboration. Eur. Phys. J. C 49, 499 (2007)

    Article  ADS  Google Scholar 

  72. K. Götzen, BaBar Collaboration. Nucl. Phys. B (Proc. Suppl.) 164, 117 (2007)

    Article  ADS  Google Scholar 

  73. Y.I. Azimov, I.I. Strakovsky, Phys. Rev. C 70, 035210 (2004)

    Article  ADS  Google Scholar 

  74. A.N. Aleev et al., SVD Collaboration. Phys. Atom. Nucl. 68, 974 (2005)

    Article  ADS  Google Scholar 

  75. A. Aleev et al., SVD Collaboration, arXiv:hep-ex/0509033

  76. Y.M. Antipov et al., SPHINX Collaboration. Eur. Phys. J. A A21, 455 (2004)

    Google Scholar 

  77. I. Abt et al., HERA-B Collaboration. Phys. Rev. Lett 93, 212003 (2004)

    Article  ADS  Google Scholar 

  78. M.J. Longo et al., HyperCP Collaboration. Phys. Rev. D 70, 111101(R) (2004)

    Article  ADS  Google Scholar 

  79. C. Pinkenburg et al., PHENIX Collaboration. J. Phys. G 30, S1201 (2004)

    Article  ADS  Google Scholar 

  80. D.O. Litvintsev et al., CDF Collaboration. Nucl. Phys. B (Proc. Suppl.) 142, 374 (2005)

    Article  ADS  Google Scholar 

  81. M.I. Adamovich et al., WA89 Collaboration. Phys. Rev. C 72, 055201 (2005)

    Article  ADS  Google Scholar 

  82. A.I. Titov, A. Hosaka, S. Daté, Y. Ohashi, Phys. Rev. C 70, 042202(R) (2004)

    Article  ADS  Google Scholar 

  83. M. Abdel-Bary et al., COSY-TOF Collaboration. Phys. Lett. B 595, 127 (2004)

    Article  ADS  Google Scholar 

  84. M. Abdel-Bary et al., COSY-TOF Collaboration. Phys. Lett. B 649, 252 (2007)

    Article  ADS  Google Scholar 

  85. M. Nekipelov et al., COSY-ANKE Collaboration. J. Phys. G 34, 627 (2007)

    Article  ADS  Google Scholar 

  86. K. Miwa et al., KEK-PS E522 Collaboration. Phys. Lett. B 635, 72 (2006)

    Article  ADS  Google Scholar 

  87. K. Miwa et al., KEK-PS E559 Collaboration. Phys. Rev. C 77, 045203 (2008)

    Article  ADS  Google Scholar 

  88. V. Kubarovsky et al., CLAS Collaboration. Phys. Rev. Lett. 97, 102001 (2006)

    Article  ADS  Google Scholar 

  89. Y. Qiang et al., Jefferson Lab Hall A Collaboration. Phys. Rev. C 75, 055208 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  90. C. Alt et al., NA49 Collaboration. Phys. Rev. Lett. 92, 042003 (2004)

    Article  ADS  Google Scholar 

  91. A. Aktas et al., H1 Collaboration. Phys. Lett. B 588, 17 (2004)

    Article  ADS  Google Scholar 

  92. M.I. Adamovich et al., WA89 Collaboration. Phys. Rev. C 70, 022201(R) (2004)

    Article  ADS  Google Scholar 

  93. A. Airapetian et al., HERMES Collaboration. Phys. Rev. D 71, 032004 (2005)

    Article  ADS  Google Scholar 

  94. E.S. Ageev et al., COMPASS Collaboration. Eur. Phys. J. C 41, 469 (2005)

    Article  Google Scholar 

  95. S. Chekanov et al., ZEUS Collaboration. Phys. Lett. B 610, 212 (2005)

    Article  ADS  Google Scholar 

  96. D.C. Christian et al., FNAL E690 Collaboration. Phys. Rev. Lett. 95, 152001 (2005)

    Article  ADS  Google Scholar 

  97. A.N. Aleev et al., EXCHARM Collaboration. Phys. Atom. Nucl. 70, 1527 (2007)

    Article  ADS  Google Scholar 

  98. A. Abulencia et al., CDF Collaboration. Phys. Rev. D 75, 032003 (2007)

    Article  ADS  Google Scholar 

  99. A. Aktas et al., H1 Collaboration. Eur. Phys. J. C 52, 507 (2007)

    Article  ADS  Google Scholar 

  100. J.M. Link et al., FOCUS Collaboration. Phys. Lett. B 661, 14 (2008)

    Article  ADS  Google Scholar 

  101. H. Egiyan et al., CLAS Collaboration. Phys. Rev. C 85, 015205 (2012)

    Article  ADS  Google Scholar 

  102. S. Chekanov et al., ZEUS Collaboration. Eur. Phys. J. C 38, 29 (2004)

    Article  Google Scholar 

  103. B. Aubert et al., BaBar Collaboration. Phys. Rev. D 73, 091101 (2006)

    Article  ADS  Google Scholar 

  104. G. De Lellis et al., CHORUS Collaboration. Nucl. Phys. B 763, 268 (2007)

    Article  ADS  Google Scholar 

  105. J. Pochodzalla, arXiv:hep-ex/0406077 (Talk presented at the 2nd PANDA Physics Workshop, Frascati, 2004)

  106. W. Liu, C.M. Ko, Phys. Rev. C 68, 045203 (2003)

    Article  ADS  Google Scholar 

  107. T. Hyodo, A. Hosaka, E. Oset, Phys. Lett. B 579, 290 (2004)

    Article  ADS  Google Scholar 

  108. Y. Oh, H. Kim, S.H. Lee, Phys. Rev. D 69, 014009 (2004)

    Article  ADS  Google Scholar 

  109. Y. Oh, H. Kim, S.H. Lee, Phys. Rev. D 69, 074016 (2004)

    Article  ADS  Google Scholar 

  110. C.M. Ko, W. Liu, arXiv:nucl-th/0410068 (Proceedings of PENTAQUARK04)

  111. P. Ko, J. Lee, T. Lee, J.-H. Park, Phys. Lett. B 611, 87 (2005)

    Article  ADS  Google Scholar 

  112. T. Hyodo, A. Hosaka, Phys. Rev. C 72, 055202 (2005)

    Article  ADS  Google Scholar 

  113. T. Hyodo, A. Hosaka, M. Oka, Prog. Theor. Phys. 128, 523 (2012)

    Article  ADS  Google Scholar 

  114. M. Naruki et al., J-PARC proposal E19 (2006), http://j-parc.jp/researcher/Hadron/en/pac_0606/pdf/p19-Naruki.pdf

  115. T. Nagae (ed.), Special Issue: Particle and Nuclear Physics at J-PARC, Prog. Theor. Exp. Phys. Issue 2 (2012)

    Google Scholar 

  116. K. Shirotori et al., J-PARC E19 Collaboration. Phys. Rev. Lett. 109, 132002 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manabu Moritsu .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Moritsu, M. (2016). Introduction to Pentaquark Search. In: Search for the Pentaquark Θ+ via the π−p → K−X Reaction at J-PARC. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-0012-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0012-6_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0010-2

  • Online ISBN: 978-981-10-0012-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics