Skip to main content

Arctic Ice Shelf Ecosystems

  • Chapter
  • First Online:
Arctic Ice Shelves and Ice Islands

Part of the book series: Springer Polar Sciences ((SPPS))

Abstract

Arctic ice shelves are microbial ecosystems with a rich biodiversity. Until recently, polar ice shelves were seen as mostly abiotic glaciological features, however they are oases for life, with snow, meltwater pools and sediments providing cryohabitats for microbiota. The biological communities are composed of diverse forms of microscopic life, including cyanobacteria, heterotrophic bacteria, viruses, algae, other protists and microfauna, and occupy a variety of habitats: supraglacial meltwater lakes, englacial microhabitats within the ice and snow and planktonic environments in ice-dammed, epishelf lakes. These habitats are defined by seasonal light availability, cold temperatures and nutrient poor conditions. In the supraglacial pools, production is dominated by benthic microbial mat assemblages that have diverse stress adaptation systems and that use internal nutrient recycling and scavenging strategies. Despite short growth periods and perennial low temperatures, biomass accumulations are considerable, with a striking diversity of light-harvesting, UV-protection and other accessory pigments. The chemical characteristics such as conductivity and origin of salts are defined by the underlying ice types, and microbial mat studies from adjacent habitats show a high resilience to solute concentration during freeze-up. The structural integrity of these cryoecosystems is dependent on ice, and they are therefore vulnerable to climate change. Many of these unique Arctic ecosystems have been lost by ice shelf collapse over the last two decades, and they are now on the brink of complete extinction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ACIA. (2005). Arctic climate impact assessment (pp. 1042). Cambridge: Cambridge University Press.

    Google Scholar 

  • Amato, P., Hennebelle, R. I., Maganda, O., Sancelme, M., Delort, A.-M., Barbante, C., Boutron, C., & Ferrari, C. (2007). Bacterial characterization of the snow cover at Spitzberg, Svalbard. FEMS Microbiology Ecology, 59, 255–264.

    Article  Google Scholar 

  • Archer, S., McDonald, I., Herbold, C., & Cary, S. (2014). Characterization of bacterioplankton communities in the meltwater ponds of Bratina Island, Victoria Land, Antarctica. FEMS Microbiology Ecology, 89, 451–464.

    Article  Google Scholar 

  • Archer, D. J., McDonald, I. R., Herbold, C. W., Lee, C. K., & Cary, C. S. (2015). Benthic microbial communities of coastal terrestrial and ice shelf Antarctic meltwater ponds. Frontiers in Microbiology, 6, 485. doi:10.3389/fmicb.2015.00485.

    Article  Google Scholar 

  • Boetius, A., Anesio, A. M., Deming, J. W., Mikucki, J. A., & Rapp, J. Z. (2015). Microbial ecology of the cryosphere: Sea ice and glacial habitats. Nature Reviews Microbiology, 13, 677–690.

    Article  Google Scholar 

  • Bonilla, S., Villeneuve, V., & Vincent, W. F. (2005). Benthic and planktonic algal communities in a High Arctic lake: Pigment structure and contrasting responses to nutrient enrichment. Journal of Phycology, 41, 1120–1130.

    Article  Google Scholar 

  • Bonilla, S., Rautio, M., & Vincent, W. F. (2009). Phytoplankton and phytobenthos pigment strategies: Implications for algal survival in the changing Arctic. Polar Biology, 28, 846–861.

    Google Scholar 

  • Bottos, E. M., Vincent, W. F., Greer, C. W., & Whyte, L. G. (2008). Prokaryotic diversity of arctic ice shelf microbial mats. Environmental Microbiology, 10, 950–966.

    Article  Google Scholar 

  • Brinkmeyer, R., Knittel, K., Jürgens, J., Weyland, H., Amann, R., & Helmke, E. (2003). Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Applied and Environmental Microbiology, 69, 6610–6619.

    Article  Google Scholar 

  • Cairns, A. A. (1967). The zooplankton of Tanquary Fjord, Ellesmere Island, with special reference to calanoid copepods. Journal of Fisheries Research Board of Canada, 24, 555–568.

    Article  Google Scholar 

  • Cameron, K. A., Hodson, A. J., & Osborn, A. M. (2012). Structure and diversity of bacterial, eukaryotic and archaean communities in glacial cryoconite holes from the Arctic and the Antarctic. FEMS Microbiology Ecology, 82, 254–267.

    Article  Google Scholar 

  • Castenholz, R. W. (1992). Species usage, concept, and evolution in the cyanobacteria (blue-green algae). Journal of Phycology, 28, 737–745.

    Article  Google Scholar 

  • Chrismas, N. A. M., Anesio, A. M., & Sánchez-Baracaldo, P. (2015). Multiple adaptations to polar and alpine environments within cyanobacteria: A phylogenomic and Bayesian approach. Frontiers in Microbiology, 6, 1070.

    Article  Google Scholar 

  • Christner, B. C., Cai, R., Morris, C., McCarter, K. S., Foreman, C. M., Skidmore, M. L., Montross, S. N., & Sands, D. C. (2008). Geographic, seasonal, and precipitation chemistry influence on the abundance and activity of biological ice nucleators in rain and snow. Proceedings of the National Academy of Sciences of the United States of America, 105, 18854–18859.

    Google Scholar 

  • Copland, L., Mueller, D. R., & Weir, L. (2007). Rapid loss of the Ayles Ice Shelf, Ellesmere Island, Canada. Geophysical Research Letters, 34, L21501.

    Article  Google Scholar 

  • Copland, L., Mortimer, C., White, A., Richer McCallum, M., & Mueller, D. (2017). Factors contributing to recent Arctic ice shelf losses. In L. Copland & D. Mueller (Eds.), Arctic ice shelves and ice islands (p. 263–285). Dordrecht: Springer. doi:10.1007/978-94-024-1101-0_10.

    Google Scholar 

  • Crary, A. P., Kulp, J. L., & Marshall, E. W. (1955). Evidences of climatic change from ice island studies. Science, 122, 1171–1173.

    Article  Google Scholar 

  • de Mora, S. J., Whitehead, R. F., & Gregory, M. (1994). The chemical composition of glacial melt water ponds on the McMurdo Ice Shelf, Antarctica. Antarctic Science, 6, 17–27.

    Article  Google Scholar 

  • Doran, P. T., Wharton Jr., R. A., Lyons, J. B., Des Marais, D. J., & Andersen, D. T. (2000). Sedimentology and geochemistry of a perennially ice-covered epishelf lake in Bunger Hills Oasis, East Antarctica. Antarctic Science, 11, 131–140.

    Google Scholar 

  • Edwards, A., Douglas, B., Anesio, A. M., Rassner, S. M., Irvine-Flynn, T. D. L., Sattler, B., & Griffith, F. W. (2013). A distinctive fungal community inhabiting cryoconite holes on glaciers in Svalbard. Fungal Ecology, 6(2), 168–176.

    Article  Google Scholar 

  • Ehling-Schulz, M., & Scherer, S. (1999). UV protection in cyanobacteria. European Journal of Phycology, 34, 329–338.

    Article  Google Scholar 

  • Friedmann, E. I. (1986). The Antarctic cold desert and the search for traces of life on Mars. Advances in Space Research, 6, 265–268.

    Article  Google Scholar 

  • Fritsen, C. H., & Priscu, J. C. (1998). Cyanobacterial assemblages in permanent ice covers on Antarctic lakes: Distribution, growth rate, and temperature response of photosynthesis. Journal of Phycology, 34, 587–597.

    Article  Google Scholar 

  • Garcia-Pichel, F., & Castenholz, R. W. (1991). Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. Journal of Phycology, 27, 395–409.

    Article  Google Scholar 

  • Gibson, J. A. E., & Andersen, D. T. (2002). Physical structure of epishelf lakes of the southern Bunger Hills, East Antarctica. Antarctic Science, 14, 253–261.

    Article  Google Scholar 

  • Harding, T., Jungblut, A. D., Lovejoy, C., & Vincent, W. F. (2011). Microbes in high Arctic snow and implications for the cold biosphere. Applied and Environmental Microbiology, 77, 3234–3243.

    Article  Google Scholar 

  • Hawes, I., Smith, R., Howard-Williams, C., & Schwarz, A. M. (1999). Environmental conditions during freezing, and response of microbial mats in ponds of the McMurdo Ice Shelf, Antarctica. Antarctic Science, 11, 198–208.

    Article  Google Scholar 

  • Hawes, I., Howard-Williams, C., & Fountain, A. G. (2008). Ice-based freshwater ecosystems. In W. F. Vincent & J. Laybourn-Parry (Eds.), Polar lakes and rivers – limnology of Arctic and Antarctic aquatic ecosystems (p. 103–118). Oxford: Oxford University Press.

    Chapter  Google Scholar 

  • Heywood, R. B. (1977). A limnological survey of the ablation point area, Alexander Island, Antarctica. Philosophical Transactions of the Royal Society B: Biological Sciences, 279, 39–54.

    Article  Google Scholar 

  • Hodgson, D., Gibson, J., & Doran, P. T. (2004a). Antarctic paleolimnology. In R. Pienitz, M. S. V. Douglas, & J. P. Smol (Eds.), Long-term environmental change in Arctic and Antarctic lakes (p. 419–474). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Hodgson, D., Vyverman, W., Verleyen, E., Sabbe, K., Leavitt, P., Taton, A., Squier, A., & Keely, B. (2004b). Environmental factors influencing the pigment composition of in situ benthic microbial communities in East Antarctic lakes. Aquatic Microbial Ecology, 37, 247–263.

    Article  Google Scholar 

  • Hoffman, P. F. (2016). Cryoconite pans on snowball earth: Supraglacial oases for Cryogenian eukaryotes? Geobiology, 14, 531–542.

    Article  Google Scholar 

  • Holdsworth, G. (1987). The surface waveforms on the Ellesmere Island ice shelves and ice islands. In Workshop on Extreme Ice Features, Banff, Alberta, November 3–5, 1986, National Research Council of Canada (p. 385–403).

    Google Scholar 

  • Howard-Williams, C., Pridmore, R. D., Broady, P. A., & Vincent, W. F. (1990). Environmental and biological variability in the McMurdo Ice Shelf ecosystem. In K. R. Kerry & G. Hempel (Eds.), Antarctic ecosystems: Ecological change and conservation (p. 23–31). Berlin: Springer.

    Chapter  Google Scholar 

  • Jeffries, M. O. (1992). Arctic ice shelves and ice islands: Origin, growth and disintegration, physical characteristics, structural-stratigraphic variability, and dynamics. Reviews of Geophysics, 30, 245–267.

    Article  Google Scholar 

  • Jeffries, M. O. (2017). The Ellesmere ice shelves, Nunavut, Canada. In L. Copland & D. Mueller (Eds.), Arctic ice shelves and ice islands (p. 23–54). Dordrecht: Springer. doi:10.1007/978-94-024-1101-0_2.

    Google Scholar 

  • Jungblut, A., Hawes, I., Mountfort, D., Hitzfeld, B., Dietrich, D., Burns, B., & Neilan, B. (2005). Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. Environmental Microbiology, 7, 519–529.

    Article  Google Scholar 

  • Jungblut, A., Lovejoy, C., & Vincent, W. F. (2010). Global distribution of cyanobacterial ecotypes in the cold biosphere. The ISME Journal, 4, 191–202.

    Article  Google Scholar 

  • Jungblut, A. D., Vincent, W. F., & Lovejoy, C. (2012). Eukaryotes in Arctic and Antarctic cyanobacterial mats. FEMS Microbiology Ecology, 82, 416–428.

    Article  Google Scholar 

  • Keys J. E. (1977). Water regime of ice-covered fiords and lakes. Ph.D. Thesis, Marine Sciences Centre, McGill University, Montreal, pp. 75

    Google Scholar 

  • Keys J. E. (1978). Water regime of Disraeli Fiord, Ellesmere Island Report Number 792. Ottawa: Defence Research Establishment Ottawa, pp. 58

    Google Scholar 

  • Laybourn-Parry, J. (2002). Survival mechanisms in Antarctica lakes. Philosophical Transactions of the Royal Society B: Biological Sciences, 357, 863–869.

    Article  Google Scholar 

  • Laybourn-Parry, J., Madan, N. J., Marshall, W. A., Marchant, H. J., & Wright, S. W. (2006). Carbon dynamics in an ultra-oligotrophic epishelf lake (Beaver Lake, Antarctica) in summer. Freshwater Biology, 51, 1116–1130.

    Article  Google Scholar 

  • Lionard, M., Péquin, B., Lovejoy, C., & Vincent, W. F. (2012). Benthic cyanobacterial mats in the high Arctic: Multi-layer structure and fluorescence responses to osmotic stress. Frontiers in Aquatic Microbiology, 3, 140. doi:10.3389/fmicb.2012.00140.

    Google Scholar 

  • Ludlam, S. D. (1996). Stratification patterns in Taconite Inlet, Ellesmere Island, N.W.T. Journal of Paleolimnology, 16, 205–215.

    Google Scholar 

  • Mader, H. M., Pettitt, M., Wadham, J. L., Wolff, E., & Parkes, J. (2006). Subsurface ice as a microbial habitat. Geology, 34, 169–172.

    Article  Google Scholar 

  • McKnight, D. M., Boyer, E. W., Westerhoff, P. K., Doran, P. T., Kulbe, T., & Andersen, D. T. (2001). Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnology and Oceanography, 46, 38–48.

    Article  Google Scholar 

  • Miteva, V. I., Sheridan, P. P., & Brenchley, J. E. (2004). Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland glacier ice core. Applied and Environmental Microbiology, 70, 202–213.

    Article  Google Scholar 

  • Mountfort, D., Kaspar, H. F., Downes, M. T., & Asher, R. (1999). Partitioning effects during terminal carbon and electron flow in sediments of a low-salinity meltwater pond near Bratina Island, McMurdo Ice Shelf, Antarctica. Applied and Environmental Microbiology, 65, 5493–5499.

    Google Scholar 

  • Mountfort, D., Kaspar, H., Asher, R., & Sutherland, D. (2003). Influences of pond geochemistry, temperature, and freeze-thaw on terminal anaerobic processes occurring in sediments of six ponds of the McMurdo Ice Shelf, near Bratina Island, Antarctica. Applied and Environmental Microbiology, 69, 583–592.

    Article  Google Scholar 

  • Mueller, D. R., & Vincent, W. F. (2006). Microbial habitat dynamics and ablation control on the Ward Hunt Ice Shelf. Hydrological Processes, 20, 857–876.

    Article  Google Scholar 

  • Mueller, D. R., Vincent, W. F., Pollard, W. H., & Fritsen, C. H. (2001). Glacial cryoconite ecosystems: A bipolar comparison of algal communities and habitats. Nova Hedwigia, Beiheft, 123, 173–197.

    Google Scholar 

  • Mueller, D. R., Jeffries, M. O., & Vincent, W. F. (2003a). Ice shelf break-up and ecosystem loss in the Canadian High Arctic. Eos, Transactions of the American Geophysical Union, 84, 548,552.

    Article  Google Scholar 

  • Mueller, D. R., Vincent, W. F., & Jeffries, M. O. (2003b). Break-up of the largest Arctic ice shelf and associated loss of an epishelf lake. Geophysical Research Letters, 30, 2031.

    Article  Google Scholar 

  • Mueller, D. R., Vincent, W. F., Bonilla, S., & Laurion, I. (2005). Extremotrophs, extremophiles and broadband pigmentation strategies in a high Arctic ice shelf ecosystem. FEMS Microbiology Ecology, 53, 73–87.

    Article  Google Scholar 

  • Mueller, D. R., Vincent, W. F., & Jeffries, M. O. (2006). Environmental gradients, fragmented habitats and microbiota of a northern ice shelf cryoecosystem, Ellesmere Island, Canada. Arctic, Antarctic, and Alpine Research, 38, 593–607.

    Article  Google Scholar 

  • Mueller, D. R., Copland, L., Hamilton, A., & Stern, D. R. (2008). Examining Arctic ice shelves prior to 2008 breakup. Eos, Transactions of the American Geophysical Union, 89, 502–503.

    Article  Google Scholar 

  • Müller, T., Bleiß, W., Martin, C.-D., Rogaschewski, S., & Fuhr, G. (1998). Snow algae from Northwest Svalbard: Their identification, distribution, pigment and nutrient content. Polar Biology, 20, 14–23.

    Article  Google Scholar 

  • Narod, B. B., Clarke, G. K. C., & Prager, B. T. (1988). Airborne UHF radar sounding of glaciers and ice shelves, northern Ellesmere Island, Arctic Canada. Canadian Journal of Earth Sciences, 25, 95–105.

    Article  Google Scholar 

  • Oren, A. (2000). Salt and brines. In B. A. Whitton & M. Potts (Eds.), The ecology of cyanobacteria: Their diversity in time and space (p. 281–306). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Pearl, H. W., & Pinckney, J. L. (1996). A mini-review of microbial consortia: Their role in aquatic production and biogeochemical cycling. Microbial Ecology, 31, 225–247.

    Google Scholar 

  • Pointing, S. B., Büdel, B., Convey, P., Gillman, L., Körner, C., Leuzinger, S., & Vincent, W. F. (2015). Biogeography of photoautotrophs in the high polar biome. Frontiers in Plant Science, 6, 692. doi:10.3389/fpls.2015.00692.

    Article  Google Scholar 

  • Price, P. B. (2007). Microbial life in glacial ice and implications for a cold origin of life. FEMS Microbiology Ecology, 59, 217–231.

    Article  Google Scholar 

  • Price, P. B., & Sowers, T. (2004). Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proceedings of the National Academy of Sciences of the United States of America, 101, 4631–4636.

    Google Scholar 

  • Priscu, J. C., & Christner, B. C. (2004). Earth’s icy biosphere. In A. Bull (Ed.), Microbial diversity and bioprospecting (p. 130–145). Washington, DC: American Society for Microbiology.

    Chapter  Google Scholar 

  • Quesada, A., & Vincent, W. F. (1997). Strategies of adaptation by Antarctic cyanobacteria to ultraviolet radiation. European Journal of Phycology, 32, 335–342.

    Article  Google Scholar 

  • Quesada, A., Vincent, W. F., & Lean, D. R. S. (1999). Community and pigment structure of Arctic cyanobacterial assemblages: The occurrence and distribution of UV-absorbing compounds. FEMS Microbiology Ecology, 28, 315–323.

    Article  Google Scholar 

  • Rivkina, E. M., Friedmann, E. I., McKay, C. P., & Gilichinsky, D. A. (2000). Metabolic activity of permafrost bacteria below the freezing point. Applied and Environmental Microbiology, 66, 3230–3233.

    Article  Google Scholar 

  • Roos, J. C., & Vincent, W. F. (1998). Temperature dependence of UV radiation effects on Antarctic cyanobacteria. Journal of Phycology, 34, 118–125.

    Article  Google Scholar 

  • Schopf, J. W., & Walter, M. R. (1982). Origin and early evolution of cyanobacteria: The geological evidence. In G. Carr & B. A. Whitton (Eds.), The biology of cyanobacteria (p. 543–564). Oxford: Blackwell Scientific Publisher.

    Google Scholar 

  • Schraeder, R. L. (1968). Ablation of Ice Island ARLIS II, 1961. M.Sc. Thesis, Department of Geology, University of Alaska, College, Fairbanks, pp. 59

    Google Scholar 

  • Sjöling, S., & Cowan, D. A. (2003). High 16S rDNA bacterial diversity in glacial meltwater lake sediment, Bratina Island, Antarctica. Extremophiles, 7, 275–282.

    Article  Google Scholar 

  • Smith, D. D. (1961). Sequential development of surface morphology on Fletcher’s Ice Island, T-3. In G. O. Raasch (Ed.), Geology of the Arctic (p. 896–914). Toronto: University of Toronto Press.

    Google Scholar 

  • Smith, J. A., Hodgson, D., Bentley, M. J., Verleyen, E., Leng, M. J., & Roberts, S. J. (2006). Limnology of two Antarctic epishelf lakes and their potential to record periods of ice shelf loss. Journal of Paleolimnology, 35, 373–394.

    Article  Google Scholar 

  • Squier, A. H., Airs, R. L., Hodgson, D. A., & Keely, B. J. (2004). Atmospheric pressure chemical ionisation liquid chromatography/mass spectrometry of the ultraviolet screening pigment scytonemin: Characteristic fragmentations. Rapid Communications in Mass Spectrometry, 18, 2934–2938.

    Article  Google Scholar 

  • Stal, L. (2000). Cyanobacterial mats and stromatolites. In B. A. Whitton & M. Potts (Eds.), The ecology of cyanobacteria: Their diversity in time and space (p. 61–120). Dordrecht: Kluwer Academic Press.

    Google Scholar 

  • Stal, L. (2003). Microphytobenthos, their extracellular polymeric substances, and the morphogenesis of intertidal sediments. Geomicrobiology Journal, 20, 463–478.

    Article  Google Scholar 

  • Tang, E. P. Y., Tremblay, R., & Vincent, W. F. (1997). Cyanobacteria dominance of polar freshwater ecosystems: Are high-latitude mat-formers adapted to low temperature? Journal of Phycology, 33, 171–181.

    Article  Google Scholar 

  • Thibault, D., Head, E. J. H., & Wheeler, P. A. (1999). Mesozooplankton in the Arctic Ocean in summer. Deep Sea Research: Part I - Oceanographic Research Papers, 46, 1391–1415.

    Article  Google Scholar 

  • Van Hove, P., Swadling, K., Gibson, J. A. E., Belzile, C., & Vincent, W. F. (2001). Farthest north lake and fjord populations of calanoid copepods Limnocalanus macrurus and Drepanopus bungei in the Canadian High Arctic. Polar Biology, 24, 303–307.

    Article  Google Scholar 

  • Van Hove, P., Belzile, C., Gibson, J. A. E., & Vincent, W. F. (2006). Coupled landscape-lake evolution in the coastal High Arctic. Canadian Journal of Earth Sciences, 43, 533–546.

    Article  Google Scholar 

  • Van Hove, P., Vincent, W. F., Galand, P. E., & Wilmotte, A. (2008). Abundance and diversity of picocyanobacteria in High Arctic lakes and fjords. Algological Studies, 126, 209–227.

    Article  Google Scholar 

  • Van Trappen, S., Mergaert, J., Van Eygen, S., Dawyndt, P., Cnockaert, M. C., & Swings, J. (2002). Diversity of 746 heterotrophic bacteria isolated from microbial mats from ten Antarctic lakes. Systematic and Applied Microbiology, 25, 603–610.

    Article  Google Scholar 

  • Varin, T., Lovejoy, C., Jungblut, A. D., Vincent, W. F., & Corbeil, J. (2010). Metagenomic profiling of Arctic microbial mat communities as nutrient scavenging and recycling systems. Limnology and Oceanography, 55, 1901–1911.

    Article  Google Scholar 

  • Varin, T., Lovejoy, C., Jungblut, A. D., Vincent, W. F., & Corbeil, J. (2012). Metagenomic analysis of stress genes in microbial mat communities from extreme Arctic and Antarctic environments. Applied and Environmental Microbiology, 78, 549–559.

    Article  Google Scholar 

  • Veillette, J., Mueller, D. R., Antoniades, D., & Vincent, W. F. (2008). Arctic epishelf lakes as sentinel ecosystems: Past, present and future. Journal of Geophysical Research - Biogeosciences, 113, G04014.

    Article  Google Scholar 

  • Veillette, J., Lovejoy, C., Potvin, M., Harding, T., Jungblut, A. D., Antoniades, D., Chénard, C., Suttle, C. A., & Vincent, W. F. (2011). Milne Fiord epishelf lake: A coastal Arctic ecosystem vulnerable to climate change. Ecoscience, 18, 304–316.

    Article  Google Scholar 

  • Vézina, S., & Vincent, W. F. (1997). Arctic cyanobacteria and limnological properties of their environment: Bylot Island, Northwest Territories, Canada (73°N, 80°W). Polar Biology, 17, 523–534.

    Article  Google Scholar 

  • Villeneuve, V., Vincent, W. F., & Komárek, J. (2001). Community structure and microhabitat characteristics of cyanobacterial mats in an extreme high Arctic environment: Ward Hunt Lake. Nova Hedwigia, Beiheft, 123, 199–224.

    Google Scholar 

  • Vincent, W. F. (1988). Microbial ecosystems of Antarctica (304 pp). Cambridge: Cambridge University Press.

    Google Scholar 

  • Vincent, W. F. (2000a). Evolutionary origins of Antarctic microbiota: Invasion, detection and endemism. Antarctic Science, 12, 374–386.

    Article  Google Scholar 

  • Vincent, W. F. (2000b). Cyanobacterial dominance in the polar regions. In B. A. Whitton & M. Potts (Eds.), The ecology of cyanobacteria: Their diversity in time and space (p. 321–340). Dordrecht: Kluwer Academic Press.

    Google Scholar 

  • Vincent, W. F. (2007). Cold tolerance in cyanobacteria and life in the cryosphere. In J. Seckbach (Ed.), Algae and cyanobacteria in extreme environments (p. 287–301). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Vincent, W. F. (2009). Cyanobacteria. In G. E. Likens (Ed.), Encyclopedia of inland waters (Vol. 3, p. 55–60). Oxford: Elsevier.

    Google Scholar 

  • Vincent, W. F., & Howard-Williams, C. (1989). Microbial communities in southern Victoria Land streams (Antarctica). 2. The effects of low temperature. Hydrobiologia, 172, 39–49.

    Article  Google Scholar 

  • Vincent, W. F., & Howard-Williams, C. (2000). Life on snowball earth. Science, 287, 2421.

    Article  Google Scholar 

  • Vincent, W. F., & Neale, P. J. (2000). Mechanisms of UV damage to aquatic organisms. In S. J. de Mora, S. Demers, & M. Vernet (Eds.), The effects of UV radiation in the marine environment (p. 149–176). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Vincent, W. F., Castenholz, R. W., Downes, M. T., & Howard-Williams, C. (1993). Antarctic cyanobacteria: Light, nutrients, and photosynthesis in the microbial mat environment. Journal of Phycology, 29, 745–755.

    Article  Google Scholar 

  • Vincent, W. F., Gibson, J. A., Pienitz, R., Villeneuve, V., Broady, P. A., Hamilton, P. B., & Howard-Williams, C. (2000). Ice shelf microbial ecosystems in the high Arctic and implications for life on snowball earth. Naturwissenschaften, 87, 137–141.

    Article  Google Scholar 

  • Vincent, W. F., Gibson, J. A. E., & Jeffries, M. O. (2001). Ice shelf collapse, climate change, and habitat loss in the Canadian High Arctic. Polar Record, 37, 133–142.

    Article  Google Scholar 

  • Vincent, W. F., Mueller, D. R., & Bonilla, S. (2004). Ecosystems on ice: The microbial ecology of Markham Ice Shelf in the high Arctic. Cryobiology, 48, 103–112.

    Article  Google Scholar 

  • Vincent, W. F., Whyte, L. G., Lovejoy, C., Greer, C. W., Laurion, I., Suttle, C. A., Corbeil, J., & Mueller, D. R. (2009). Arctic microbial ecosystems and impacts of extreme warming during the International Polar Year. Polar Science, 3, 171–180.

    Article  Google Scholar 

  • Webster-Brown, J. G., Hawes, I., Jungblut, A. D., Wood, S. A., & Christenson, H. K. (2015). The effects of entombment on water chemistry and bacterial assemblages in closed cryoconite holes on Antarctic glaciers. FEMS Microbiology Ecology, 91(12). doi:10.1093/femsec/fiv144.

  • Wheeler, P. A., Gosselin, N., Sherr, E., Thibault, D., Kirchman, D. L., Benner, R., & Whiteledge, T. E. (1996). Active cycling of organic carbon in the Central Arctic Ocean. Nature, 380, 697–699.

    Article  Google Scholar 

  • White, A., Mueller, D., & Copland, L. (2015). Reconstructing hydrographic change in Petersen Bay, Ellesmere Island, Canada, inferred from SAR imagery. Remote Sensing of Environment, 165, 1–13.

    Article  Google Scholar 

  • Yallop, M. L., Anesio, A. M., Perkins, R. G., Cook, J., Telling, J., Fagan, D., MacFarlane, J., Stibal, M., Barker, G., Bellas, C., Hodson, A., Tranter, M., Wadham, J., & Roberts, N. W. (2012). Photophysiology and albedo-changing potential of the ice algal communities on the surface of the Greenland Ice Sheet. The ISME Journal, 6, 2302–2313.

    Article  Google Scholar 

  • Zakhia, F., Jungblut, A. D., Taton, A., Vincent, W. F., & Wilmotte, A. (2008). Cyanobacteria in cold environments. In R. Margesin, F. Schinner, J. C. Marx, & C. Gerday (Eds.), Psychrophiles: From biodiversity to biotechnology (p. 121–135). Heidelberg: Springer.

    Chapter  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Natural Sciences and Engineering Research Council of Canada, the Canada Research Chair program, le Fonds québécois de la recherche sur la nature et les technologies, the Northern Scientific Training Program, and the Network of Centre of Excellence program ArcticNet, with logistics support from the Polar Continental Shelf Program and Parks Canada. We thank Dominic Hodgson and an anonymous reviewer for their insightful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne D. Jungblut .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Jungblut, A.D., Mueller, D., Vincent, W.F. (2017). Arctic Ice Shelf Ecosystems. In: Copland, L., Mueller, D. (eds) Arctic Ice Shelves and Ice Islands. Springer Polar Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1101-0_9

Download citation

Publish with us

Policies and ethics