Skip to main content

Medical Applications of Nanomaterials

  • Conference paper
  • First Online:
Nano-Optics: Principles Enabling Basic Research and Applications

Abstract

This chapter is devoted to an introduction to the fascinating field of nanomedicine. In particular, the role of material scientists in this interdisciplinary area will be discussed, by considering how the structural, morphological, and functional properties of nanoparticles can be designed for specific medical applications. Due to the large extent of the field, focus will be given to the optical applications of inorganic nanoparticles in medicine. These include in vitro and in vivo imaging, self-lighting photodynamic therapy, hyperthermia, and thermometry. Moreover some specific issues like self-absorption and autofluorescence, which turn out to be critical for the functionalization of luminescent nanoparticles, will be also described and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, C. (2014). A targeted approach to cancer imaging and therapy. Nature Materials, 13, 110.

    Article  ADS  Google Scholar 

  2. Fahi, G. (1992). Nanotechnology in medicine. U.S. Pharmacopeial Convention, https://www.foresight.org/Updates/Update16/Update16.1.html#anchor576239

  3. Cheng, C. J., Tietjen, G. T., Saucier-Sawyer, J. K., & Saltzman, W. M. (2015). A holistic approach to targeting disease with polymeric nanoparticles. Nature Reviews, 14, 239.

    Google Scholar 

  4. Cheng, Z., Al Zaki, A., Hui, J. Z., Muzykantov, V. R., & Tsourkas, A. (2012). Multifunctional nanoparticles: Cost versus benefit of adding targeting and imaging capabilities. Science, 38, 903.

    Article  ADS  Google Scholar 

  5. Daniel, M.-C., & Astruc, D. (2004). Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews, 104, 293.

    Article  Google Scholar 

  6. Eustis, S., & El-Sayed, M. A. (2006). Why gold nanoparticles are more precious than pretty gold: Noble metal surface Plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chemical Society Reviews, 35, 209.

    Article  Google Scholar 

  7. Park, J.-H., Gu, L., von Maltzahn, G., Ruoslahti, E., Bhatia, S. N., & Sailor, M. J. (2009). Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nature Materials, 8(331).

    Google Scholar 

  8. Welsher, K., Sherlock, S. P., & Dai, H. (2011). Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. PNAS, 108, 8943.

    Article  ADS  Google Scholar 

  9. Weissleder, R., Nahrendorfand, M., & Pittet, M. J. (2014). Imaging macrophages with nanoparticles. Nature Materials, 13, 125.

    Article  ADS  Google Scholar 

  10. Hilderbrandt, S. A., & Weissleder, S. (2010). Near-infrared fluorescence: application to in vivo molecular imaging. Current Opinion in Chemical Biology, 14, 71.

    Article  Google Scholar 

  11. Jacques, S. L. (2013). Optical properties of biological tissues: a review. Physics in Medicine and Biology, 58, R37.

    Article  ADS  Google Scholar 

  12. Pansare, V. J., Hejazi, S., Faenza, W. J., & Prud’homme, R. K. (2012). Review of long-wavelength optical and NIR imaging materials: Contrast agents, fluorophores, and multifunctional nano carriers. Chemistry of Materials, 24, 812.

    Article  Google Scholar 

  13. Naczynski, D. J., Tan, M. C., Zevon, M., Wall, B., Kohl, J., Kulesa, A., Chen, S., Roth, C. M., Riman, R. E., & Moghe, P. V. (2013). Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nature Communications, 4, 2199. doi:10.1038/ncomms3199.

    Article  ADS  Google Scholar 

  14. Villa, I., Vedda, A., Xochilt Cantarelli, I., Pedroni, M., Piccinelli, F., Bettinelli, M., Speghini, A., Quintanilla, M., Vetrone, F., Rocha, U., Jacinto, C., Carrasco, E., Sanz Rodríguez, F., Juarranz de la Cruz, Á., Haro Gonzalez, P., García Solé, J., & Jaque García, D. (2015). 1.3 μm emitting SrF2:Nd3+ nanoparticles for high contrast in vivo imaging in the second biological window. Nano Research, 8, 649.

    Article  Google Scholar 

  15. Mc Keever, S. W. S. (1985). Thermoluminescence of solids. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  16. Avouris, P., & Morgan, T. N. (1981). A tunneling model for the decay of luminescence in inorganic phosphors: The case of Zn2SiO4:Mn. Journal of Chemical Physics, 74, 4347.

    Article  ADS  Google Scholar 

  17. Caratto, V., Locardi, F., Costa, G. A., Masini, R., Fasoli, M., Panzeri, L., Martini, M., Bottinelli, E., Gianotti, E., & Miletto, I. (2014). NIR persistent luminescence of lanthanide Ion-doped rare-earth oxycarbonates: The effect of dopants. ACS Applied Materials and Interfaces, 6, 17346.

    Article  Google Scholar 

  18. Lecointre, A., Viana, B., LeMasne, Q., Bessière, A., Chaneac, C., & Gourier, D. (2009). Red long-lasting luminescence in clinoenstatite. Journal of Luminescence, 129, 1527.

    Article  ADS  Google Scholar 

  19. Lecointre, A., Bessiere, A., Viana, B., & Gourier, D. (2010). Red persistent luminescent silicate nanoparticles. Radiation Measurements, 45, 497.

    Article  Google Scholar 

  20. Maldiney, T., Lecointre, A., Viana, B., Bessièere, A., Bessodes, M., Gourier, D., Richard, C., & Scherman, D. (2011). Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging. Journal of the American Chemical Society, 133, 11810.

    Article  Google Scholar 

  21. Pan, Z., Lu, Y.-Y., & Liu, F. (2012). Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates. Nature Materials, 11, 58.

    Article  ADS  Google Scholar 

  22. le Masne de Chermont, Q., Chanéac, C., Seguin, J., Pellé, F., Maîtrejean, S., Jolivet, J.-P., Gourier, D., Bessodes, M., & Scherman, D. (2007). Nanoprobes with near-infrared persistent luminescence for in vivo imaging. PNAS, 104, 9266.

    Article  ADS  Google Scholar 

  23. Singh, S. K. (2014). Red and near infrared persistent luminescence nano-probes for bioimaging and targeting applications. RSC Advances, 4, 58674.

    Article  Google Scholar 

  24. Sun, M., Li, Z.-J., Liu, C.-L., Fu, H.-X., Shen, J.-S., & Zhang, H.-W. (2014). Persistent luminescent nanoparticles for super-longtime in vivo and in situ imaging with repeatable excitation. Journal of Luminescence, 145, 838.

    Article  ADS  Google Scholar 

  25. Ueda, J., Shinoda, T., & Tanabe, S. (2013). Photochromism and near-infrared persistent luminescence in Eu2+-Nd3+-co-doped CaAl2O4 Ceramics. Optical Materials Experimental, 3, 787.

    Article  Google Scholar 

  26. Wang, X.-J., Jia, D., & Yen, W. M. (2003). Mn2+ activated green, yellow, and red long persistent phosphors. Journal of Luminescence, 102–103, 34.

    Article  Google Scholar 

  27. Maldiney, T., Bessière, A., Seguin, J., Teston, E., Sharma, S. K., Viana, B., Bos, A. J. J., Dorenbos, P., Bessodes, M., Gourier, D., Scherman, D., & Richard, C. (2014). Thein vivo activation of persistent nanophosphors for optical imaging of vascularization, tumors and grafted cells. Nature Materials, 13, 418.

    Article  ADS  Google Scholar 

  28. Dougherty, T. J., Grindey, G. B., Fiel, R., Weishaupt, K. R., & Boyle, D. G. (1975). Photoradiation therapy. II. Cure of animal tumors with hematoporphyrin and light. Journal of the Nature Cancer Institute, 55, 115.

    Article  Google Scholar 

  29. Chen, W., & Zhang, J. (2006). Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment. Journal of Nanoscience and Nanotechnology, 6, 1159.

    Article  Google Scholar 

  30. Chen, H., Wang, G. D., Chuang, Y.-J., Zhen, Z., Chen, X., Biddinger, P., Hao, Z., Liu, F., Shen, B., Pan, Z., & Xie, J. (2015). Nanoscintillator-mediated X-ray inducible photodynamic therapy for in vivo cancer treatment. Nano Letters, 15, 2249.

    Article  ADS  Google Scholar 

  31. St Denis, T. G., Aziz, K., Waheed, A. A., Huang, Y.-Y., Sharma, S. K., Mroz, P., & Hamblin, M. R. (2011). Combination approaches to potentiate immune response after photodynamic therapy for cancer. Photochemical and Photobiological Sciences, 10(5), 792.

    Article  Google Scholar 

  32. Robertson, C. A., Hawkins Evans, D., & Abrahamse, H. (2009). Photodynamic therapy (PDT): A short review on cellular mechanisms and cancer research applications for PDT. Journal of Photochemistry and Photobiology. B, 96, 1.

    Article  Google Scholar 

  33. Juzenas, P., Chen, W., Sun, Y.-P., Coelho, M. A. N., Generalov, R., Generalova, N., & Christensen, I. L. (2008). Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Advanced Drug Delivery Reviews, 60, 1600.

    Article  Google Scholar 

  34. Tang, Y., Hu, J., Elmenoufy, A. H., & Yang, X. (2015). Highly efficient FRET system capable of deep photodynamic therapy established on X‐ray excited mesoporous LaF3:Tb scintillating nanoparticles. ACS Applied Materials and Interfaces, 7, 12261.

    Article  Google Scholar 

  35. Liu, Y., Chen, W., Wang, S., Joly, A. G., Westcott, S., & Woo, B. K. (2008). Investigation of water-soluble x-ray luminescence nanoparticles for photodynamic activation. Applied Physics Letters, 92, 043901.

    Article  ADS  Google Scholar 

  36. Bulin, A.-L., et al. (2013). X-ray-induced singlet oxygen activation with nanoscintillator-coupled porphyrins. Journal of Physical Chemistry C, 117, 21583.

    Article  Google Scholar 

  37. Bulin, A.-L., Vasil’ev, A., Belsky, A., Amans, D., Ledoux, G., & Dujardin, C. (2015). Modelling energy deposition in nanoscintillators to predict the efficiency of the X-ray-induced photodynamic effect. Nanoscale, 7, 5744.

    Article  ADS  Google Scholar 

  38. Ma, L., Zou, X., Bui, B., Chen, W., Song, K. H., & Solberg, T. (2014). X-ray excited ZnS:Cu, Co afterglow nanoparticles for photodynamic activation. Applied Physics Letters, 105, 013702.

    Article  ADS  Google Scholar 

  39. Jaque, D., Martınez Maestro, L., del Rosal, B., Haro-Gonzalez, P., Benayas, A., Plaza, J. L., Rodrıguez, E. M., & Solé, J. G. (2014). Nanoparticles for photothermal therapies. Nanoscale, 6, 9494.

    Article  ADS  Google Scholar 

  40. Bednarkiewicz, A., Wawrzynczyk, D., Nyk, M., & Strek, W. (2011). Optically stimulated heating using Nd3+ doped NaYF4 colloidal near infrared nanophosphors. Applied Physics B, 103, 847.

    Article  Google Scholar 

  41. Wawrzynczyk, D., Bednarkiewicz, A., Nyk, M., Strek, W., & Samoc, M. (2012). Neodymium(III) doped fluoride nanoparticles as non-contact optical temperature sensors. Nanoscale, 4, 6959.

    Article  ADS  Google Scholar 

  42. Rocha, U., da Silva, C. J., Silva, W. F., Guedes, I., Benayas, A., Maestro, L. M., Elias, M. A., Bovero, E., van Veggel, F. C. J. M., Solé, J. A. G., & Jaque, D. (2013). Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles. ACS Nano, 7, 1188.

    Article  Google Scholar 

  43. Carrasco, E., del Rosal, B., Sanz-Rodríguez, F., Juarranz de la Fuente, Á., Gonzalez, P. H., Rocha, U., Kumar, K. U., Jacinto, C., Solé, J. G., & Jaque, D. (2015). Intratumoral thermal reading during photo-thermal therapy by multifunctional fluorescent nanoparticles. Advanced Functional Materials, 25, 615.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Professors José Garcia Solé, Daniel Jaque, M. Bettinelli, and A. Speghini for the fruitful collaboration and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Vedda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Vedda, A., Villa, I. (2017). Medical Applications of Nanomaterials. In: Di Bartolo, B., Collins, J., Silvestri, L. (eds) Nano-Optics: Principles Enabling Basic Research and Applications. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0850-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-024-0850-8_18

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-024-0848-5

  • Online ISBN: 978-94-024-0850-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics