Skip to main content

How Latitude Location on a Micro-World Enables Real-Time Nanoparticle Sizing

  • Conference paper
  • First Online:
Nano-Optics: Principles Enabling Basic Research and Applications

Abstract

We have devised a method for using the nanoparticle induced frequency shift of whispering gallery modes (WGMs) in a microspheroid for the accurate determination of the nanoparticle size in real time. Before the introduction of this technique, size determination from the mode shift could only be obtained statistically based on the assumption that the largest perturbation occurs for binding at the equator. Determining the latitude of the binding event using two polar WGMs results in an analytic method for size determination using a single binding event. The analysis proceeds by incorporating the binding latitude into the Reactive Sensing Principle (RSP), itself containing a shape dependent form factor found using the Born approximation. By comparing this theory with experiments we find that our theoretical approach is more accurate than point dipole theory even though the optical size (circumference/wavelength) is considerably less than one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnold, S., Holler, S., & Fan, X. (2015). Taking microcavity label-free single molecule detection deep into the protein realm: Cancer marker detection at the ultimate sensitivity. In Nano-structures for optics and photonics (pp. 309–322). Dordrecht: Springer.

    Google Scholar 

  2. Arnold, S., Ramjit, R., Keng, D., Kolchenko, V., & Teraoka, I. (2008). Microparticle photophysics illuminates viral bio-sensing. Faraday Discussions, 137, 65–83.

    Article  ADS  Google Scholar 

  3. McClellan, M. S., Domier, L. L., & Bailey, R. C. (2012). Label-free virus detection using silicon photonic microring resonators. Biosensors and Bioelectronics, 31, 388–392.

    Article  Google Scholar 

  4. Arnold, S., Khoshsima, M., Teraoka, I., Holler, S., & Vollmer, F. (2003). Shift of whispering- gallery modes in microspheres by protein adsorption. Optics Letters, 28, 272–274.

    Article  ADS  Google Scholar 

  5. Foreman, M. R., Swaim, J. D., & Vollmer, F. (2015). Whispering gallery mode sensors. Advances in Optics and Photonics, 7, 168–240.

    Article  Google Scholar 

  6. Arnold, S., Keng, D., Shopova, S. I., Holler, S., Zurawsky, W., & Vollmer, F. (2009). Whispering gallery mode carousel. Optics Express, 17, 6230–6238.

    Article  ADS  Google Scholar 

  7. Zhu, J., Ozdemir, S. K., Xiao, Y. F., Li, L., He, L., Chen, D. R., & Yang, L. (2010). On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nature Photonics, 4, 46–49.

    Article  ADS  Google Scholar 

  8. Kim, W., Özdemir, Ş. K., Zhu, J., & Yang, L. (2011). Observation and characterization of mode splitting in microsphere resonators in aquatic environment. Applied Physics Letters, 98, 141106.

    Article  ADS  Google Scholar 

  9. Lu, T., Lee, H., Chen, T., Herchak, S., Kim, J. H., Fraser, S. E., Flagan, R., & Vahala, K. (2011). High sensitivity nanoparticle detection using optical microcavities. Proceedings of the National Academy of Sciences, 108, 5976–5979.

    Article  ADS  Google Scholar 

  10. Keng, D., Tan, X., & Arnold, S. (2014). Whispering gallery micro-global positioning system for nanoparticle sizing in real time. Applied Physics Letters, 105, 071105.

    Article  ADS  Google Scholar 

  11. Khoshsima, M. (2004). Perturbation of whispering gallery modes in microspheres by protein adsorption: Theory and experiment. Doctoral dissertation, Polytechnic University.

    Google Scholar 

  12. Vollmer, F. (2004). Resonant detection of nano to microscopic objects using whispering gallery modes. Doctoral dissertation, The Rockefeller University.

    Google Scholar 

  13. Deych, L., & Shuvayev, V. (2015). Spectral modification of whispering-gallery-mode resonances in spheroidal resonators due to interaction with ultra-small particles. Optics Letters, 40, 4536–4539.

    Article  ADS  Google Scholar 

  14. Keng, T. K. D. (2009). Whispering gallery mode bioparticle sensing and transport. Doctoral dissertation, Polytechnic Institute of New York University.

    Google Scholar 

  15. Keng, D., McAnanama, S. R., Teraoka, I., & Arnold, S. (2007). Resonance fluctuations of a whispering gallery mode biosensor by particles undergoing Brownian motion. Applied Physics Letters, 91, 103902.

    Article  ADS  Google Scholar 

  16. Lin, G., Qian, B., Oručević, F., Candela, Y., Jager, J. B., Cai, Z., Lefevre-Segun, V., & Hare, J. (2010). Excitation mapping of whispering gallery modes in silica microcavities. Optics Letters, 35, 583–585.

    Article  ADS  Google Scholar 

  17. Little, B. E., Laine, J. P., & Haus, H. A. (1999). Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators. Journal of Lightwave Technology, 17, 704–715.

    Article  ADS  Google Scholar 

  18. Teraoka, I., & Arnold, S. (2006). Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications. Journal of the Optical Society of America B, 23, 1381–1389.

    Article  Google Scholar 

  19. Sobel, D. (2007). Longitude: The true story of a lone genius who solved the greatest scientific problem of his time. New York: Bloomsbury Publishing.

    Google Scholar 

Download references

Acknowledgements

The research described herein was supported by the National Science Foundation grant EECS 1303499.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Arnold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Arnold, S., Keng, D., Treasurer, E., Foreman, M.R. (2017). How Latitude Location on a Micro-World Enables Real-Time Nanoparticle Sizing. In: Di Bartolo, B., Collins, J., Silvestri, L. (eds) Nano-Optics: Principles Enabling Basic Research and Applications. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-0850-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-024-0850-8_11

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-024-0848-5

  • Online ISBN: 978-94-024-0850-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics