Skip to main content

Biochemical Properties of Amniotic Membrane

  • Chapter
Amniotic Membrane

Abstract

The amniotic membrane, also known as amnion, has been recently characterized as a promising source for tissue transplantation. It has several properties that become an attractive tool in several applications. Among the several properties, it could be highlighted their ability to reduce the inflammation status and to secrete pro-apoptotic factors. The cells of amniotic membrane are divided into two subpopulations, amniotic epithelial cells and amniotic mesenchymal cells, which present similar characteristics to stem cells. These cells express pluripotent markers, present high expansion in vitro and can be differentiated into all three germ layer. In this chapter, it will be reviewed the main characteristics of amniotic membrane and its biochemical components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Méhats C, Schmitz T, Marcellin L, Breuiller-Fouché M (2011) Biochemistry of fetal membranes rupture. Gynécol Obstet Fertil 39:365–369

    Article  PubMed  Google Scholar 

  2. Higa K, Shimmura S, Shimazaki J, Tsubota K (2005) Hyaluronic acid-CD44 interaction mediates the adhesion of lymphocytes by amniotic membrane stroma. Cornea 24:206–212

    Article  PubMed  Google Scholar 

  3. Hao Y, Ma DH-K, Hwang DG et al (2000) Identification of antiangiogenic and antiinflammatory proteins in human amniotic membrane. Cornea 19:348–352

    Article  CAS  PubMed  Google Scholar 

  4. Solomon A, Rosenblatt M, Monroy D et al (2001) Suppression of interleukin 1alpha and interleukin 1beta in human limbal epithelial cells cultured on the amniotic membrane stromal matrix. Br J Ophthalmol 85:444–449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Kim JS, Kim JC, Na BK et al (2000) Amniotic membrane patching promotes healing and inhibits proteinase activity on wound healing following acute corneal alkali burn. Exp Eye Res 70:329–337

    Article  CAS  PubMed  Google Scholar 

  6. King A, Paltoo A, Kelly R et al (2007) Expression of natural antimicrobials by human placenta and fetal membranes. Placenta 28:161–169

    Article  CAS  PubMed  Google Scholar 

  7. Akle C, Adinolfi M, Welsh K et al (1981) Immunogenicity of human amniotic epithelial cells after transplantation into volunteers. Lancet 2:1003–1005

    Article  CAS  PubMed  Google Scholar 

  8. Cornwell KG, Landsman A, James KS (2009) Extracellular matrix biomaterials for soft tissue repair. Clin Podiatr Med Surg 26:507–523

    Article  PubMed  Google Scholar 

  9. Tseng SC, Li D-Q, Ma X (1999) Suppression of transforming growth factor-beta isoforms, TGF-beta receptor type II and myofibroblast differentiation in cultured human corneal and limbal fibroblasts by amniotic membrane matrix. J Cell Physiol 179:325–335

    Article  CAS  PubMed  Google Scholar 

  10. Lee S, Li D, Tan D et al (2000) Suppression of TGF-beta signaling in both normal conjunctival fibroblasts and pterygial body fibroblasts by amniotic membrane. Curr Eye Res 20:325–334

    Article  CAS  PubMed  Google Scholar 

  11. Niknejad H, Yazdanpanah G, Mirmasoumi M et al (2013) Inhibition of HSP90 could be possible mechanism for anti-cancer property of amniotic membrane. Med Hypotheses 81:862–865

    Article  CAS  PubMed  Google Scholar 

  12. Li W, He H, Kawakita T et al (2006) Amniotic membrane induces apoptosis of interferon-gamma activated macrophages in vitro. Exp Eye Res 82:282–292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Seo JH, Kim YH, Kim JS (2008) Properties of the amniotic membrane may be applicable in cancer therapy. Med Hypotheses 70:812–814

    Article  CAS  PubMed  Google Scholar 

  14. Ganatra M (2003) Amniotic membrane in surgery. J Pakistan Med Assoc 53:29–32

    CAS  Google Scholar 

  15. Mermet I, Pottier N, Sainthillier JM et al (2007) Use of amniotic membrane transplantation in the treatment of venous leg ulcers. Wound Repair Regen 15:459–464

    Article  PubMed  Google Scholar 

  16. Niknejad H, Peirovi H, Jorjani M et al (2008) Properties of the amniotic membrane for potential use in tissue engineering. Eur Cell Mater 15:88–99

    CAS  PubMed  Google Scholar 

  17. Dua HS, Gomes JA, King AJ, Maharajan VS (2004) The amniotic membrane in ophthalmology. Surv Ophthalmol 49:51–77

    Article  PubMed  Google Scholar 

  18. Amer MI, Abd-El-Maeboud KH (2006) Amnion graft following hysteroscopic lysis of intrauterine adhesions. J Obstet Gynaecol Res 32:559–566

    Article  PubMed  Google Scholar 

  19. Jin CZ, Park SR, Choi BH et al (2007) Human amniotic membrane as a delivery matrix for articular cartilage repair. Tissue Eng 13:693–702

    Article  CAS  PubMed  Google Scholar 

  20. Toda A, Okabe M, Yoshida T, Nikaido T (2007) The potential of amniotic membrane/amnion-derived cells for regeneration of various tissues. J Pharmacol Sci 105:215–228

    Article  CAS  PubMed  Google Scholar 

  21. Chen Z, Tortella FC, Dave JR et al (2009) Human amnion-derived multipotent progenitor cell treatment alleviates traumatic brain injury-induced axonal degeneration. J Neurotrauma 26:1987–1997

    Article  PubMed  Google Scholar 

  22. Fernandes M, Sridhar MS, Sangwan VS, Rao GN (2005) Amniotic membrane transplantation for ocular surface reconstruction. Cornea 24:643–653

    Article  PubMed  Google Scholar 

  23. Yang L, Shirakata Y, Shudou M et al (2006) New skin-equivalent model from de-epithelialized amnion membrane. Cell Tissue Res 326:69–77

    Article  CAS  PubMed  Google Scholar 

  24. Wilshaw S-P, Kearney JN, Fisher J, Ingham E (2006) Production of an acellular amniotic membrane matrix for use in tissue engineering. Tissue Eng 12:2117–2129

    Article  CAS  PubMed  Google Scholar 

  25. Sadler TW (2012) Langman’s: medical embryology, 12th edn. Wolters Kluwer Health, Philadelphia, p 400

    Google Scholar 

  26. Pollards SM, Aye N, Symonds E (1976) Scanning electron microscope appearances of normal human amnion and umbilical cord at term. Br J Obstet Gynaecol 83:470–477

    Article  Google Scholar 

  27. Miki T, Lehmann T, Cai H et al (2005) Stem cell characteristics of amniotic epithelial cells. Stem Cells 23:1549–1559

    Article  CAS  PubMed  Google Scholar 

  28. Miki T, Marongiu F, Ellis EC et al (2007) Isolation of amniotic epithelial stem cells. Curr Protoc Cell Biol Chapter 1:Unit 1E 3

    Google Scholar 

  29. Streuli C (1996) Basement membrane as a differentiation and survival factor. In: Ekblom P, Timpl R (eds) The laminins. CRC Press, The Netherlands, p 321

    Google Scholar 

  30. Fukuda K, Chikama T, Nakamura M, Nishida T (1999) Differential distribution of subchains of the basement membrane components type IV collagen and laminin among the amniotic membrane, cornea and conjunctiva. Cornea 18:73–79

    Article  CAS  PubMed  Google Scholar 

  31. Fukushima Y, Ohnishi T, Arita N et al (1998) Integrin alpha3beta1-mediated interaction with laminin-5 stimulates adhesion, migration and invasion of malignant glioma cells. Int J Cancer 76:63–72

    Article  CAS  PubMed  Google Scholar 

  32. Akashi T, Miyagi T, Ando N et al (1999) Synthesis of basement membrane by gastrointestinal cancer cell lines. J Pathol 187:223–228

    Article  CAS  PubMed  Google Scholar 

  33. Bryant-Greenwood G (1998) The extracellular matrix of the human fetal membranes: structure and function. Placenta 19:1–11

    Article  CAS  PubMed  Google Scholar 

  34. Malak T, Ockleford C, Bell S et al (1993) Confocal immunofluorescence localization of collagen types I, III, IV, V and VI and their ultrastructural organization in term human fetal membranes. Placenta 14:385–406

    Article  CAS  PubMed  Google Scholar 

  35. Parry S, Strauss JF (1998) Premature rupture of the fetal membranes. N Engl J Med 338:663–670

    Article  CAS  PubMed  Google Scholar 

  36. Fetterolf DE, Snyder RJ (2012) Scientific and clinical support for the use of dehydrated amniotic membrane in wound management. Wounds 24:299–307

    PubMed  Google Scholar 

  37. Szpak P (2011) Fish bone chemistry and ultrastructure: implications for taphonomy and stable isotope analysis. J Archaeol Sci 38:3358–3372

    Article  Google Scholar 

  38. Lodish H, Berk A, Lawrence Zipursky S et al (2000) Molecular cell biology, 4th edn. W. H. Freeman, New York, p 1184

    Google Scholar 

  39. Alberts B, Johnson A, Lewis J et al (2002) Molecular biology of the cell, 4th edn. Garland Science, New York

    Google Scholar 

  40. Prévost TP (2006) Biomechanics of the human chorioamnion. Massachusetts Inst Technol 115

    Google Scholar 

  41. Meinert M, Eriksen GV, Petersen AC et al (2001) Proteoglycans and hyaluronan in human fetal membranes. Am J Obstet Gynecol 184:679–685

    Article  CAS  PubMed  Google Scholar 

  42. Schmidt MB, Mow VC, Chun LE, Eyre DR (1990) Effects of proteoglycan extraction on the tensile behavior of articular cartilage. J Orthop Res 8:353–363

    Article  CAS  PubMed  Google Scholar 

  43. Danielson KG, Baribault H, Holmes DF et al (1997) Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J Cell Biol 136:729–743

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Iozzo RV, Murdoch AD (1996) Proteoglycans of the extracellular environment: clues from the gene and protein side offer novel perspectives in molecular diversity and function. Faseb J 10:598–614

    CAS  PubMed  Google Scholar 

  45. Yamada KM (1991) Fibronectin and other cell interactive glycoproteins. In: Hay ED (ed) Cell Biol. Extracell. matrix, 2nd edn. Springer US, New York, pp 111–146

    Chapter  Google Scholar 

  46. Feinberg RF, Kliman H, Lockwoodt CJ (1991) Is oncofetal fibronectin a trophoblast glue for human implantation? Am J Pathol 138:537–543

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Aota S, Nagai T, Olden K et al (1991) Fibronectin and integrins in cell adhesion and migration. Biochem Soc Trans 19:830–835

    CAS  PubMed  Google Scholar 

  48. Champliaud M-F, Lunstrum GP, Rousselle P et al (1996) Human amnion contains a novel laminin variant, laminin 7, which like laminin 6, covalently associates with laminin 5 to promote stable epithelial-stromal attachment. J Cell Biol 132:1189–1198

    Article  CAS  PubMed  Google Scholar 

  49. Hieber A, Corcino D, Motosue J et al (1997) Detection of elastin in the human fetal membranes: proposed molecular basis for elasticity. Placenta 18:301–312

    Article  CAS  PubMed  Google Scholar 

  50. Malak T, Bell S (1994) Distribution of fibrillin-containing microfibrils and elastin in human fetal membranes: a novel molecular basis for membrane elasticity. Am J Obstet Gynecol 171:195–205

    Article  CAS  PubMed  Google Scholar 

  51. Cunningham FG, Leveno KJ, Bloom SL et al (2001) Williams obstetrics, 23rd edn. McGraw-Hill, New York, p 1404

    Google Scholar 

  52. Bara M, Moretto P, Durlach J, Guiet-Bara A (2003) Physiological importance of the connective tissue in the human amnion: role of magnesium. Magnes Res 16:35–42

    CAS  PubMed  Google Scholar 

  53. Beall M, van den Wijngaard J, van Gemert M, Ross M (2007) Amniotic fluid water dynamics. Placenta 28:816–823

    Article  CAS  PubMed  Google Scholar 

  54. Beall M, Wang S, Yang B et al (2007) Placental and membrane aquaporin water channels: correlation with amniotic fluid volume and composition. Placenta 28:421–428

    Article  CAS  PubMed  Google Scholar 

  55. Zhu X, Jiang S, Zhu X et al (2009) Expression of aquaporin 1 and aquaporin 3 in fetal membranes and placenta in human term pregnancies with oligohydramnios. Placenta 30:670–676

    Article  CAS  PubMed  Google Scholar 

  56. Jiang S, Zhu X, Ding S et al (2012) Expression and localization of aquaporins 8 and 9 in term placenta with oligohydramnios. Reprod Sci 19:1276–1284

    Article  CAS  PubMed  Google Scholar 

  57. Prat C, Blanchon L, Borel V et al (2012) Ontogeny of aquaporins in human fetal membranes. Biol Reprod 86:1–8

    Article  Google Scholar 

  58. Ishibashi K, Kondo S, Hara S, Morishita Y (2011) The evolutionary aspects of aquaporin family. Am J Physiol Regul Integr Comp Physiol 300:R566–R576

    Article  CAS  PubMed  Google Scholar 

  59. Silini A, Parolini O, Huppertz B, Lang I (2013) Soluble factors of amnion-derived cells in treatment of inflammatory and fibrotic pathologies. Curr Stem Cell Res Ther 8:6–14

    Article  CAS  PubMed  Google Scholar 

  60. He H, Li W, Tseng DY et al (2009) Biochemical characterization and function of complexes formed by hyaluronan and the heavy chains of inter-alpha-inhibitor (HC-HA) purified from extracts of human amniotic membrane. J Biol Chem 284:20136–20146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Fortunato S, Menon R, Lombardi S (1998) Presence of four tissue inhibitors of matrix metalloproteinases (TIMP-1, -2, -3 and -4) in human fetal membranes. Am J Reprod Immunol 40:395–400

    Article  CAS  PubMed  Google Scholar 

  62. Fortunato SJ, Menon R, Lombardi SJ (1998) The effect of transforming growth factor and interleukin-10 on interleukin-8 release by human amniochorion may regulate histologic chorioamnionitis. Am J Obstet Gynecol 179:794–799

    Article  CAS  PubMed  Google Scholar 

  63. Li H, Niederkorn JY, Neelam S et al (2005) Immunosuppressive factors secreted by human amniotic epithelial cells. Invest Ophthalmol Vis Sci 46:900–907

    Article  PubMed  Google Scholar 

  64. Apte R, Sinha D, Mayhew E et al (1998) Cutting edge: role of macrophage migration inhibitory factor in inhibiting NK cell activity and preserving immune privilege. J Immunol 160:5693–5696

    CAS  PubMed  Google Scholar 

  65. Okazaki T, Casey M, Okita J et al (1981) Initiation of human parturition. XII: biosynthesis and metabolism of prostaglandins in human fetal membranes and uterine decidua. Am J Obstet Gynecol 139:373–381

    CAS  PubMed  Google Scholar 

  66. Bryant-Greenwood G, Rees M, Turnbull A (1987) Immunohistochemical localization of relaxin, prolactin and prostaglandin synthase in human amnion, chorion and decidua. J Endocrinol 114:491–496

    Article  CAS  PubMed  Google Scholar 

  67. Toth P, Li X, Lei Z, Rao C (1996) Expression of human chorionic gonadotropin (hCG)/luteinizing hormone receptors and regulation of the cyclooxygenase-1 gene by exogenous hCG in human fetal membranes. J Clin Endocrinol Metab 81:1283–1288

    CAS  PubMed  Google Scholar 

  68. Yañez R, Oviedo A, Aldea M et al (2010) Prostaglandin E2 plays a key role in the immunosuppressive properties of adipose and bone marrow tissue-derived mesenchymal stromal cells. Exp Cell Res 316:3109–3123

    Article  PubMed  Google Scholar 

  69. Parolini O, Alviano F, Bagnara GP et al (2008) Concise review – isolation and characterization of cells from human term placenta: outcome of the first international workshop on placenta derived stem cells. Stem Cells 26:300–311

    Article  PubMed  Google Scholar 

  70. Pappa KI, Anagnou NP (2009) Novel sources of fetal stem cells: where do they fit on the developmental continuum? Regen Med 4:423–433

    Article  PubMed  Google Scholar 

  71. Cai J, Li W, Su H et al (2010) Generation of human induced pluripotent stem cells from umbilical cord matrix and amniotic membrane mesenchymal cells. J Biol Chem 285:11227–11234

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Parolini O, Soncini M (2006) Human placenta: a source of progenitor/stem cells? J Reprod Med Endocrinol 3:117–126

    CAS  Google Scholar 

  73. Ilancheran S, Michalska A, Peh G et al (2007) Stem cells derived from human fetal membranes display multilineage differentiation potential. Biol Reprod 77:577–588

    Article  CAS  PubMed  Google Scholar 

  74. Marongiu F, Gramignoli R, Sun Q et al (2010) Isolation of amniotic mesenchymal stem cells. Curr Protoc Cell Biol 12:1E.5.1–1E.5.11

    Google Scholar 

  75. Barbati A, Mameli MG, Sidoni A, Di Renzo GC (2012) Amniotic membrane: separation of amniotic mesoderm from amniotic epithelium and isolation of their respective mesenchymal stromal and epithelial cells. Curr Protoc Stem Cell Biol 20:1E.8.1–1E.8.15

    Google Scholar 

  76. Tsai M-S, Hwang S-M, Chen K-D et al (2007) Functional network analysis of the transcriptomes of mesenchymal stem cells derived from amniotic fluid, amniotic membrane, cord blood and bone marrow. Stem Cells 25:2511–2523

    Article  CAS  PubMed  Google Scholar 

  77. Hopkinson A, McIntosh RS, Layfield R et al (2005) Optimised two-dimensional electrophoresis procedures for the protein characterisation of structural tissues. Proteomics 5:1967–1979

    Article  CAS  PubMed  Google Scholar 

  78. Hopkinson A, McIntosh RS, Shanmuganathan V et al (2006) Proteomic analysis of amniotic membrane prepared for human transplantation: characterization of proteins and clinical implications. J Proteome Res 5:2226–2235

    Article  CAS  PubMed  Google Scholar 

  79. Adams JC, Lawler J (2004) The thrombospondins. Int J Biochem Cell Biol 36:961–968

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Clezardin P, Lawler J, Amiral J et al (1997) Identification of cell adhesive active sites in the N-terminal domain of thrombospondin-1. Biochem J 321:819–827

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Zaslavsky A, Baek K-H, Lynch RC et al (2010) Platelet-derived thrombospondin-1 is a critical negative regulator and potential biomarker of angiogenesis. Blood 115:4605–4613

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Funderburgh JL, Corpuz LM, Roth MR et al (1997) Mimecan, the 25-kDa corneal keratan sulfate proteoglycan, is a product of the gene producing osteoglycin. J Biol Chem 272:28089–28095

    Article  CAS  PubMed  Google Scholar 

  83. Tasheva ES, Koester A, Paulsen AQ et al (2002) Mimecan/osteoglycin-deficient mice have collagen fibril abnormalities. Mol Vis 8:407–415

    CAS  PubMed  Google Scholar 

  84. Kampmann A, Fernandez B, Deindl E et al (2009) The proteoglycan osteoglycin/mimecan is correlated with arteriogenesis. Mol Cell Biochem 322:15–23

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Kim M-O, Yun S-J, Kim I-S et al (2003) Transforming growth factor-beta-inducible gene-h3 (beta(ig)-h3) promotes cell adhesion of human astrocytoma cells in vitro: implication of alpha6beta4 integrin. Neurosci Lett 336:93–96

    Article  CAS  PubMed  Google Scholar 

  86. Corsini NS, Martin-Villalba A (2010) Integrin alpha 6: anchors away for glioma stem cells. Cell Stem Cell 6:403–404

    Article  CAS  PubMed  Google Scholar 

  87. Baradaran-Rafii A, Aghayan H-R, Arjmand B, Javadi M-A (2007) Amniotic membrane transplantation. Iran J Ophthalmic Res 2:58–75

    Google Scholar 

  88. Baharvand H, Heidari M, Ebrahimi M et al (2007) Proteomic analysis of epithelium-denuded human amniotic membrane as a limbal stem cell nich. Mol Vis 13:1711–1721

    CAS  PubMed  Google Scholar 

  89. Park S-J, Yoon W-G, Song J-S et al (2006) Proteome analysis of human amnion and amniotic fluid by two-dimensional electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Proteomics 6:349–363

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cláudio Jorge Maia Baptista .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rocha, S.C.M., Baptista, C.J.M. (2015). Biochemical Properties of Amniotic Membrane. In: Mamede, A., Botelho, M. (eds) Amniotic Membrane. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9975-1_2

Download citation

Publish with us

Policies and ethics