Skip to main content

Pressure-Inactivated Virus: A Promising Alternative for Vaccine Production

  • Chapter
High Pressure Bioscience

Abstract

In recent years, many applications in diverse scientific fields with various purposes have examined pressure as a thermodynamic parameter. Pressure studies on viruses have direct biotechnological applications. Currently, most studies that involve viral inactivation by HHP are found in the area of food engineering and focus on the inactivation of foodborne viruses. Nevertheless, studies of viral inactivation for other purposes have also been conducted. HHP has been shown to be efficient in the inactivation of many viruses of clinical importance and the use of HHP approach has been proposed for the development of animal and human vaccines. Several studies have demonstrated that pressure can result in virus inactivation while preserving immunogenic properties. Viruses contain several components that can be susceptible to the effects of pressure. HHP has been a valuable tool for assessing viral structure function relationships because the viral structure is highly dependent on protein-protein interactions. In the case of small icosahedral viruses, incremental increases in pressure produce a progressive decrease in the folding structure when moving from assembled capsids to ribonucleoprotein intermediates (in RNA viruses), free dissociated units (dimers and/or monomers) and denatured monomers. High pressure inactivates enveloped viruses by trapping their particles in a fusion-like intermediate state. The fusogenic state, which is characterized by a smaller viral volume, is the final conformation promoted by HHP, in contrast with the metastable native state, which is characterized by a larger volume. The combined effects of high pressure with other factors, such as low or subzero temperature, pH and agents in sub-denaturing conditions (urea), have been a formidable tool in the assessment of the component’s structure, as well as pathogen inactivation. HHP is a technology for the production of inactivated vaccines that are free of chemicals, safe and capable of inducing strong humoral and cellular immune responses. Here we present a current overview about the pressure-induced viral inactivation and the production of inactivated viral vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aertsen A, Meersman F, Hendrickx ME, Vogel RF, Michiels CW (2009) Biotechnology under high pressure: applications and implications. Trends Biotechnol 27:434–441

    Article  CAS  PubMed  Google Scholar 

  • Akasaka K, Kitahara R, Kamatari YO (2013) Exploring the folding energy landscape with pressure. Arch Biochem Biophys 531:110–115

    Article  CAS  PubMed  Google Scholar 

  • Archer DL (2004) Freezing: an underutilized food safety technology? Int J Food Microbiol 90:127–138

    Article  PubMed  Google Scholar 

  • Balasubramaniam VM, Farkas D (2008) High-pressure food processing. Food Sci Technol Int 14:413–418

    Article  Google Scholar 

  • Barroso SP, Nico D, Gomes DC, Santos ACVD, Couceiro JNS, de Sousa CB, Silva JL, Oliveira AC (2012) Mice vaccination with high hydrostatic pressure-inactivated H3N8 virus protects against experimental avian flu. Procedia Vaccinol 6:98–105

    Article  CAS  Google Scholar 

  • Baxter D (2007) Active and passive immunity, vaccine types, excipients and licensing. Occup Med (Lond) 57:552–556

    Article  Google Scholar 

  • Bispo JA, Bonafe CF, Joekes I, Martinez EA, Carvalho GB, Norberto DR (2012) Entropy and volume change of dissociation in tobacco mosaic virus probed by high pressure. J Phys Chem B 116:14817–14828

    Article  CAS  PubMed  Google Scholar 

  • Bonafe CF, Vital CM, Telles RC, Gonçalves MC, Matsuura MS, Pessine FB, Freitas DR, Vega J (1998) Tobacco mosaic virus disassembly by high hydrostatic pressure in combination with urea and low temperature. Biochemistry 37:11097–11105

    Article  CAS  PubMed  Google Scholar 

  • Bradley DW, Hess RA, Tao F, Sciaba-Lentz L, Remaley AT, Laugharn JA Jr, Manak M (2000) Pressure cycling technology: a novel approach to virus inactivation in plasma. Transfusion 40:193–200

    Article  CAS  PubMed  Google Scholar 

  • Bridgman PW (1949) The physics of high pressure. G. Bell, London

    Google Scholar 

  • Brown LE, Kelso A (2009) Prospects for an influenza vaccine that induces cross-protective cytotoxic T lymphocytes. Immunol Cell Biol 87:300–308

    Article  CAS  PubMed  Google Scholar 

  • Budimir N, Meijerhof T, Wilschut J, Huckriede A, de Haan A (2010) The role of membrane fusion activity of a whole inactivated influenza virus vaccine in (re)activation of influenza-specific cytotoxic T lymphocytes. Vaccine 28:8280–8287

    Article  CAS  PubMed  Google Scholar 

  • Budimir N, de Haan A, Meijerhof T, Waijer S, Boon L, Gostick E, Price DA, Wilschut J, Huckried A (2013) Critical role of TLR7 signaling in the priming of cross-protective cytotoxic T lymphocyte responses by whole inactivated influenza virus vaccine. PLoS One 8:e63163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Calci KR, Meade GK, Tezloff RC, Kingsley DH (2005) High-pressure inactivation of hepatitis A virus within oysters. Appl Environ Microbiol 71:339–343

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ceylan C, Severcan F, Ozkul A, Severcan M, Bozoglu F, Taheri N (2012) Biophysical and microbiological study of high hydrostatic pressure inactivation of Bovine Viral Diarrheavirus type 1 on serum. Vet Microbiol 154:266–271

    Article  CAS  PubMed  Google Scholar 

  • Chawla R, Patil GR, Singh AK (2011) High hydrostatic pressure technology in dairy processing: a review. J Food Sci Technol 48:260–268

    Article  PubMed Central  PubMed  Google Scholar 

  • Cordeiro Y, Foguel D, Silva JL (2013) Pressure-temperature folding landscape in proteins involved in neurodegenerative diseases and cancer. Biophys Chem 183:9–18

    Article  CAS  PubMed  Google Scholar 

  • Da Poian AT, Oliveira AC, Gaspar LP, Silva JL, Weber G (1993) Reversible pressure dissociation of R17 bacteriophage. The physical individuality of virus particles. J Mol Biol 231:999–1008

    Article  PubMed  Google Scholar 

  • Da Poian AT, Oliveira AC, Silva JL (1995) Cold denaturation of an icosahedral virus. The role of entropy in virus assembly. Biochemistry 34(8):2672–2677

    Article  PubMed  Google Scholar 

  • Dumard CH, Barroso SPC, Oliveira GAP, Carvalho CAM, Gomes AMO, Couceiro JNSS, Ferreira DF, Nico D, Oliveira AC, Silva JL, Souza-Santos P (2013) Full inactivation of human influenza virus by high hydrostatic pressure preserves virus structure and membrane fusion while conferring protection to mice against infection. PLoS One 8:e80785

    Article  PubMed Central  PubMed  Google Scholar 

  • Dumay E, Picart L, Regnault S, Thiebaud M (2006) High pressure-low temperature processing of food proteins. Biochim Biophys Acta 1764(3):599–618

    Article  CAS  PubMed  Google Scholar 

  • Ekiert DC, Bhabha G, Elsliger MA, Friesen RH, Jongeneelen M, Throsby M, Goudsmit J, Wilson IA (2009) Antibody recognition of a highly conserved influenza virus epitope. Science 324:246–251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Engelborghs Y, Heremans KA, De Maeyer LC, Hoebeke J (1976) Effect of temperature and pressure on polymerization equilibrium of neuronal microtubules. Nature 259:686–689

    Article  CAS  PubMed  Google Scholar 

  • Ferrão-Gonzales AD, Souto SO, Silva JL, Foguel D (2000) The preaggregated state of an amyloidogenic protein: hydrostatic pressure converts native transthyretin into the amyloidogenic state. Proc Natl Acad Sci U S A 97:6445–6450

    Article  PubMed Central  PubMed  Google Scholar 

  • Ferreira E, Mendes YS, Silva JL, Galler R, Oliveira AC, Freire MS, Gaspar LP (2009) Effects of hydrostatic pressure on the stability and thermostability of poliovirus: a new method for vaccine preservation. Vaccine 27:5332–5337

    Article  CAS  PubMed  Google Scholar 

  • Foguel D, Silva JL (2004) New insights into the mechanisms of protein misfolding and aggregation in amyloidogenic diseases derived from pressure studies. Biochemistry 43:11361–11370

    Article  CAS  PubMed  Google Scholar 

  • Foguel D, Teschke CM, Prevelige PE Jr, Silva JL (1995) Role of entropic interactions in viral capsids: single amino acid substitutions in P22 bacteriophage coat protein resulting in loss of capsid stability. Biochemistry 34(4):1120–1126

    Article  CAS  PubMed  Google Scholar 

  • Foguel D, Robinson CR, de Sousa PC, Jr SJL, Robinson AS (1999) Hydrostatic pressure rescues native protein from aggregates. Biotechnol Bioeng 63:552–558

    Article  CAS  PubMed  Google Scholar 

  • Freitas M, Da Poian AT, Barth OM, Rebello MA, Silva JL (2006) The fusogenic state of mayaro virus induced by low pH and by hydrostatic pressure. Cell Biochem Biophys 44:325–335

    Article  CAS  PubMed  Google Scholar 

  • Gaspar LP, Johnson JE, Silva JL, Da Poian AT (1997) Partially folded states of the capsid protein of cowpea severe mosaic virus in the disassembly pathway. J Mol Biol 273:456–466

    Article  CAS  PubMed  Google Scholar 

  • Gaspar LP, Silva AC, Gomes AM, Freitas MS, Ano Bom AP, Schwarcz WD, Mestecky J, Novak MJ, Foguel D, Silva JL (2002) Hydrostatic pressure induces the fusion-active state of enveloped viruses. J Biol Chem 277:8433–8439

    Article  CAS  PubMed  Google Scholar 

  • Gaspar LP, Mendes YS, Yamamura AM, Almeida LF, Caride E, Gonçalves RB, Silva JL, Oliveira AC, Galler R, Freire MS (2008) Pressure-inactivated yellow fever 17DD virus: implications for vaccine development. J Virol Methods 150:57–62

    Article  CAS  PubMed  Google Scholar 

  • Geeraedts F, Bungener L, Pool J, ter Veer W, Wilschut J, Huckriede A (2008) Whole inactivated virus influenza vaccine is superior to subunit vaccine in inducing immune responses and secretion of proinflammatory cytokines by Dcs. Influenza Other Respir Viruses 2:41–51

    Article  CAS  PubMed  Google Scholar 

  • Gomes AM, Pinheiro AS, Bonafe CF, Silva JL (2003) Pressure-induced fusogenic conformation of vesicular stomatitis virus glycoprotein. Biochemistry 42:5540–5546

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves RB, Mendes YS, Soares MR, Katpally U, Smith TJ, Silva JL, Oliveira AC (2007) VP4 protein from human rhinovirus 14 is released by pressure and locked in the capsid by the antiviral compound WIN. J Mol Biol 366(1):295–306

    Article  PubMed Central  PubMed  Google Scholar 

  • Grebe KM, Yewdell JW, Bennink JR (2008) Heterosubtypic immunity to influenza A virus: where do we stand? Microbes Infect 10:1024–1029

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hayakawa K, Ueno Y, Kawamura S, Kato T, Hayashi R (1998) Microorganism inactivationusing high-pressure generation in sealed vessels under sub-zero temperature. Appl Microbiol Biotechnol 50:415–418

    Article  CAS  PubMed  Google Scholar 

  • Hehme N, Engelmann H, Kunzel W, Neumeier E, Sanger R (2002) Pandemic preparedness: lessons learnt from H2N2 and H9N2 candidate vaccines. Med Microbiol Immunol 191:203–208

    Article  CAS  PubMed  Google Scholar 

  • Heinsbroek E, Ruitenberg EJ (2010) The global introduction of inactivated polio vaccine can circumvent the oral polio vaccine paradox. Vaccine 28:3778–3783

    Article  PubMed  Google Scholar 

  • Hite B (1899) The effect of pressure in the preservation of milk. Bull W Virginia Univ Agric Exp Sta 58:15–35

    Google Scholar 

  • Huckriede A, Bungener L, Stegmann T, Daemen T, Medema J, Palache AM, Wilschut J (2005) The virosome concept for influenza vaccines. Vaccine 23(Suppl 1):S26–S38

    Article  PubMed  Google Scholar 

  • Isbarn S, Buckow R, Himmelreich A, Lehmacher A, Heinz V (2007) Inactivation of avian influenza virus by heat and high hydrostatic pressure. J Food Prot 70(3):667–673

    PubMed  Google Scholar 

  • Ishimaru D, Sá-Carvalho D, Silva JL (2004) Pressure-inactivated FMDV: a potential vaccine. Vaccine 22:2334–2339

    Article  CAS  PubMed  Google Scholar 

  • Johnson JE (1996) Functional implications of protein-protein interactions in icosahedral viruses. Proc Natl Acad Sci U S A 93:27–33

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jurkiewicz E, Vilas-Boas M, Silva JL, Weber G, Gerhard H (1995) Inactivation of simian immunodeficiency virus by hydrostatic pressure. Proc Natl Acad Sci U S A 92:6935–6937

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kalichevsky MT, Knorr D, Lillford PJ (1995) Potential food applications of high-pressure effects on ice-water transitions. Trends Food Sci Technol 6:253–258

    Article  CAS  Google Scholar 

  • Kingsley DH (2013) High pressure processing and its application to the challenge of virus-contaminated foods. Food Environ Virol 5:1–12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kingsley DH, Chen H, Hoover DG (2004) Inactivation of selected picornaviruses by high hydrostatic pressure. Virus Res 102:221–224

    Article  CAS  PubMed  Google Scholar 

  • Kingsley DH, Holliman DR, Calci KR, Chen H, Flick GJ (2007) Inactivation of a norovirus by high-pressure processing. Appl Environ Microbiol 73:581–585

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kishida T, Cui FD, Ohgitani E, Gao F, Hayakawa K, Mazda O (2013) High pressure treatment under subfreezing temperature results in drastic inactivation of enveloped and non-enveloped viruses. Biotechnol Lett 35:1297–1301

    Article  CAS  PubMed  Google Scholar 

  • Kovač K, Diez-Valcarce M, Raspor P, Hernández M, Rodríguez-Lázaro D (2012) Effect of high hydrostatic pressure processing on norovirus infectivity and genome stability in strawberry puree and mineral water. Int J Food Microbiol 152:35–39

    Article  PubMed  Google Scholar 

  • Lauffer MA, Dow RB (1941) The denaturation of tobacco mosaic virus at high pressures. J Biol Chem 140:509–518

    CAS  Google Scholar 

  • Leon JS, Kingsley DH, Montes JS, Richards GP, Lyon GM, Abdulhafid GM, Seitz SR, Fernandez ML, Teunis PF, Flick GJ, Moe CL (2011) Randomized, double-blinded clinical trial for human norovirus inactivation in oysters by high hydrostatic pressure processing. Appl Environ Microbiol 77(15):5476–5482

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leonard JN, Ferstl P, Delgado A, Schaffer DV (2007) Enhanced preparation of adeno-associated viral vectors by using high hydrostatic pressure to selectively inactivate helper adenovirus. Biotechnol Bioeng 97:1170–1179

    Article  CAS  PubMed  Google Scholar 

  • Li B, Sun DW (2002) Novel methods for rapid freezing and thawing of foods – a review. J Food Eng 54:175–182

    Article  Google Scholar 

  • Lima SM, Vaz AC, Souza TL, Peabody DS, Silva JL, Oliveira AC (2006) Dissecting the role of protein-protein and protein-nucleic acid interactions in MS2 bacteriophage stability. FEBS J 273:1463–1475

    Article  CAS  PubMed  Google Scholar 

  • Lou F, Neetoo H, Li J, Chen H, Li J (2011) Lack of correlation between vírus barosensitivity and the presence of a viral envelope during inactivation of human rotavirus, vesicular stomatitis virus, and avian metapneumovirus by high-pressure processing. Appl Environ Microbiol 77:8538–8547

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lund BM (2000) Freezing. In: Lund BM, Baird Parker TC, Gould GW (eds) The microbiological safety and quality of food, vol 1. Aspen Publishers, Gaithersburg, pp 122–145

    Google Scholar 

  • Luscher C, Balasa A, Fröhling A, Ananta E, Knorr D (2004) Effect of high-pressure-induced ice I-to-ice III phase transitions on inactivation of Listeria innocua in frozen suspension. Appl Environ Microbiol 70:4021–4029

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mignaco JA, Lima LM, Rosenthal A, Foguel D, Silva JL (2005) Highlights of the 3rd international conference on high pressure bioscience and biotechnology. Braz J Med Biol Res 38(8):1147–1155

    Article  CAS  PubMed  Google Scholar 

  • Nakagami T, Shigehisa T, Ohmori T, Taji S, Hase A, Kimura T, Yamanishi K (1992) Inactivation of herpes viruses by high hydrostatic pressure. J Virol Methods 38:255–261

    Article  CAS  PubMed  Google Scholar 

  • Norberto DR, Vieira JM, Souza AR, Bispo JAC, Bonafe CFS (2012) Pressure- and urea-induced denaturation of bovine serum albumin: considerations about protein heterogeneity. Open J Biophys 2:4–14

    Article  CAS  Google Scholar 

  • Oliveira AC, Ishimaru D, Gonçalves RB, Smith TJ, Mason P, Sa-Carvalho D, Silva JL (1999) Low temperature and pressure stability of picornaviruses: implications for virus uncoating. Biophys J 76:1270–1279

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oliveira AC, Gomes AMO, Lima SMB, Gonçalves RB, Schwarcz WD, Silva ACB, Cortines JR, Silva JL (2008) Effects of hydrostatic pressure on viruses. In: Michiels C, Bartlett D, Aertsen A (eds) High-pressure microbiology. ASM press, Washington, DC, pp 19–34, Chapter 2

    Chapter  Google Scholar 

  • Otake T, Kawahata T, Mori H, Kojima Y, Hayakawa K (2005) Novel method of inactivation of human immunodeficiency virus type 1 by the freeze pressure generation method. Appl Microbiol Biotechnol 67:746–751

    Article  CAS  PubMed  Google Scholar 

  • Pontes L, Fornells LA, Giongo V, Araujo JRV, Sepulveda A, Villas-Boas M, Bonafe CFS, Silva JL (1997) Pressure inactivation of animal viruses: potential biotechnological applications. In: Heremans K (ed) High pressure research in the bioscience and biotechnology. Leuven University Press, Leuven, pp 91–94

    Google Scholar 

  • Pontes L, Cordeiro Y, Giongo V, Villas-Boas M, Barreto A, Araújo JR, Silva JL (2001) Pressure-induced formation of inactive triple-shelled rotavirus particles is associated with changes in the spike protein VP4. J Mol Biol 307:1171–1179

    Article  CAS  PubMed  Google Scholar 

  • Prevelige PE Jr, King J, Silva JL (1994) Pressure denaturation of the bacteriophage P22 coat protein and its entropic stabilization in icosahedral shells. Biophys J 66:1631–1641

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Privalov PL (1990) Cold denaturation of proteins. Crit Rev Biochem Mol Biol 25:281–305

    Article  CAS  PubMed  Google Scholar 

  • Rastogi NK, Raghavarao KS, Balasubramaniam VM, Niranjan K, Knorr D (2007) Opportunities and challenges in high pressure processing of foods. Crit Rev Food Sci Nutr 47(1):69–112

    Article  CAS  PubMed  Google Scholar 

  • Regnard P (1884) Recherches expérimentales sur l’influence des très hautes pressions sur les organismes vivants. CR Hebd Acad Sci 98:745–747

    Google Scholar 

  • Rivalain N, Roquain J, Demazeau G (2010) Development of high hydrostatic pressure in biosciences: pressure effect on biological structures and potential applications in biotechnologies. Biotechnol Adv 28:656–672

    Article  Google Scholar 

  • Rock KL, Shen L (2005) Cross-presentation: underlying mechanisms and role in immune surveillance. Immunol Rev 207:166–183

    Article  CAS  PubMed  Google Scholar 

  • Royer H (1895) Action des hautes pressions sur quelques bactéries. Arch Phys Norm Physiol 7:12–17

    Google Scholar 

  • Salas-Peraza D, Avila-Agüero ML, Morice-Trejos A (2010) Switching from OPV to IPV: are we behind the schedule in Latin America? Expert Rev Vaccines 9:475–483

    Article  PubMed  Google Scholar 

  • Santos JL, Bispo JA, Landini GF, Bonafe CF (2004) Proton dependence of tobacco mosaic virus dissociation by pressure. Biophys Chem 111(1):53–61

    Article  CAS  PubMed  Google Scholar 

  • Santos JL, Aparicio R, Joekes I, Silva JL, Bispo JA, Bonafe CF (2008) Different urea stoichiometries between the dissociation and denaturation of tobacco mosaic virus as probed by hydrostatic pressure. Biophys Chem 134(3):214–224

    Article  CAS  PubMed  Google Scholar 

  • Sarupria S, Ghosh T, García AE, Garde S (2010) Studying pressure denaturation of a protein by molecular dynamics simulations. Proteins 78(7):1641–1651

    CAS  PubMed  Google Scholar 

  • Schwarcz WD, Barroso SP, Gomes AM, Johnson JE, Schneemann A, Oliveira AC, Silva JL (2004) Virus stability and protein-nucleic acid interaction as studied by high-pressure effects on nodaviruses. Cell Mol Biol (Noisy-le-grand) 50(4):419–427

    CAS  Google Scholar 

  • Shimasaki N, Kiyohara T, Totsuka A, Nojima K, Okada Y, Yamaguchi K, Kajioka J, Wakita T, Yoneyama T (2009) Inactivation of hepatitis A virus by heat and high hydrostatic pressure: variation among laboratory strains. Vox Sang 96:14–19

    Article  CAS  PubMed  Google Scholar 

  • Shiomi H, Urasawa T, Urasawa S, Kobayashi N, Abe S, Taniguchi K (2004) Isolation and characterisation of poliovirus mutants resistant to heating at 50 °C for 30 min. J Med Virol 74:484–491

    Article  CAS  PubMed  Google Scholar 

  • Silva JL, Foguel D, Suarez M, Gomes AMO, Oliveira AC (2004) High-pressure applications in medicine and pharmacology. J Phys Condens Matter 16:S929

    Article  CAS  Google Scholar 

  • Silva JL, Foguel D (2009) Hydration, cavities and volume in protein folding, aggregation and amyloid assembly. Phys Biol. 6(1):015002. doi:10.1088/1478-3975/6/1/015002

    Google Scholar 

  • Silva JL, Weber G (1988) Pressure-induced dissociation of brome mosaic virus. J Mol Biol 199:149–159

    Article  CAS  PubMed  Google Scholar 

  • Silva JL, Weber G (1993) Pressure stability of proteins. Annu Rev Phys Chem 44:89–113

    Article  CAS  PubMed  Google Scholar 

  • Silva JL, Luan P, Glaser M, Voss E, Weber G (1992) Effects of hydrostatic pressure on a membrane-enveloped virus: high immunogenicity of the pressure-inactivated virus. J Virol 66:2111–2117

    PubMed Central  CAS  PubMed  Google Scholar 

  • Silva JL, Foguel D, Da Poian AT, Prevelige PE (1996) The use of hydrostatic pressure as a tool to study viruses and other macromolecular assemblages. Curr Opin Struct Biol 6:166–175

    Article  CAS  PubMed  Google Scholar 

  • Silva JL, Foguel D, Royer CA (2001) Pressure provides new insights into protein folding, dynamics and structure. Trends Biochem Sci 26:612–618

    Article  CAS  PubMed  Google Scholar 

  • Silva JL, Oliveira AC, Gomes AM, Lima LM, Mohana-Borges R, Pacheco AB, Foguel D (2002) Pressure induces folding intermediates that are crucial for protein-DNA recognition and virus assembly. Biochim Biophys Acta 1595:250–265

    Article  CAS  PubMed  Google Scholar 

  • Silva JL, Vieira TC, Gomes MP, Bom AP, Lima LM, Freitas MS, Ishimaru D, Cordeiro Y, Foguel D (2010) Ligand binding and hydration in protein misfolding: insights from studies of prion and p53 tumor suppressor proteins. Acc Chem Res 43:271–279

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Skehel JJ, Wiley DC (2000) Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem 69:531–569

    Article  CAS  PubMed  Google Scholar 

  • Somero GN (1992) Adaptations to high hidrostatic pressure. Annu Rev Physiol 54:557–577

    Article  CAS  PubMed  Google Scholar 

  • Tang Q, Li D, Xu J, Wang J, Zhao Y, Li Z, Xue C (2010) Mechanism of inactivation of murine norovirus-1 by high pressure processing. Int J Food Microbiol 137(2–3):186–189

    Article  CAS  PubMed  Google Scholar 

  • Tian SM, Qian JF, Shao GQ, Ruan KC (1999) High immunogenicity of the pressure-inactivated virus. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 31(3):334–336

    Google Scholar 

  • Tian SM, Ruan KC, Qian JF, Shao GQ, Balny C (2000) Effects of hydrostatic pressure on the structure and biological activity of infectious bursal disease virus. Eur J Biochem 267(14):4486–4494

    Article  CAS  PubMed  Google Scholar 

  • Weber G, Drickamer HG (1983) The effects of high pressure upon proteins and other biomolecules. Q Rev Biophys 116:89–112

    Article  Google Scholar 

  • Wilkinson N, Kurdziel AS, Langton S, Needs E, Cook N (2001) Resistance of poliovirus to inactivation by high hydrostatic pressure. Innovative Food Sci Emerg Technol 2:95–98

    Article  Google Scholar 

  • Winter R, Jeworreck C (2009) Effect of pressure on membranes. Soft Matter 5:3157–3173

    Article  CAS  Google Scholar 

  • Wouters PC, Glaasker E, Smelt JP (1998) Effects of high pressure on inactivation kinetics and events related to proton efflux in Lactobacillus plantarum. Appl Environ Microbiol 64:509–514

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wu R, Georgescu MM, Delpeyroux F, Guillot S, Balanant J, Simpson K, Crainicl R (1995) Thermostabilization of live virus vaccines by heavy water (D2O). Vaccine 13:1058–1063

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our laboratories were supported by grants from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq awards and INCT Program), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Ministério da Saúde (Decit Program) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerson L. Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Silva, J.L. et al. (2015). Pressure-Inactivated Virus: A Promising Alternative for Vaccine Production. In: Akasaka, K., Matsuki, H. (eds) High Pressure Bioscience. Subcellular Biochemistry, vol 72. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9918-8_15

Download citation

Publish with us

Policies and ethics