Skip to main content

Modular Signatures and Neural Avalanches in Epileptic Brain Networks

  • Chapter
Recent Advances on the Modular Organization of the Cortex

Abstract

Epileptic seizures are characterized by a rich dynamic spectrum consisting of excessive, abnormal and synchronized firing of neuron ensembles. Such abnormal firing has been quantitatively characterized via power laws in neural avalanches. The term “neural avalanche” has been used to illustrate the excessively amplified neural firing patterns that lead to epileptic seizures. The pattern of amplified firing in neural avalanches betrays a modular signature in the spread of activation across cortical minicolumns. According to this modular approach of epilepsy, the excessive amplification of neural firing in a cortical minicolumn results from a defect within the “inhibitory curtain” surrounding the pyramidal cells. The functional basis of this approach provides insights into potential clinical interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson NR, Blakely T, Brunner P et al (2013) High-frequency spectral changes in Dorsolateral Prefrontal Cortex for potential neuoroprosthetics. In: Conference proceedings of the IEEE engineering in medicine and biology society 2013, pp 2247–2250

    Google Scholar 

  • Bak P (1996) How nature works: the science of self-organized criticality. Copernicus, New York

    Book  Google Scholar 

  • Bak P, Tang C, Wiesenfeld K (1987) Self-organized criticality: an explanation of the 1/f noise. Phys Rev Lett 59:381–384

    Article  PubMed  Google Scholar 

  • Bauer PR, Kalitzin S, Zijlmans M et al (2014) Cortical excitability as a potential clinical marker of epilepsy: a review of the clinical application of transcranial magnetic stimulation. Int J Neural Syst 24(2):1430001. doi:10.1142/S0129065714300010

    Article  PubMed  Google Scholar 

  • Beggs JM (2008) The criticality hypothesis: how local cortical networks might optimize information processing. Phil Trans R Soc A 366(1864):329–343

    Article  PubMed  Google Scholar 

  • Beggs JM, Plenz D (2003) Neuronal avalanches in neocortical circuits. J Neurosci 23:11167–11177

    CAS  PubMed  Google Scholar 

  • Bennewitz MF, Saltzman WM (2009) Nanotechnology for delivery of drugs to the brain for epilepsy. Neurotherapeutics 6(2):323–336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Berg AT, Brkovic SF, Brodie MJ et al (2010) Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE commission on classification and terminology, 2005–2009. Epilepsia 51(4):676–685

    Article  PubMed  Google Scholar 

  • Blackspear M, Roberts JA, Terry JR et al (2006) A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cereb Cortex 16(9):1296–1313

    Google Scholar 

  • Buxhoeveden D, Casanova M (2002) The minicolumn Hypothesis in neuroscience. Brain 125:935–951

    Article  PubMed  Google Scholar 

  • Buzsaki G, Horvath Z, Urioste R et al (1992) High-frequency network oscillation in the hippocampus. Science 256:1025–1027

    Article  CAS  PubMed  Google Scholar 

  • Casanova MF, Trippe J, Switala A (2007) A temporal continuity to the vertical organization of the human neocortex. Cereb Cortex 17(1):130–137

    Article  PubMed  Google Scholar 

  • Chang BS, Lowenstein DH (2003) Epilepsy. N Engl J Med 349(13):1257–1266. doi:10.1056/NEJMra022308, PMID 14507951

    Article  PubMed  Google Scholar 

  • Chrobak JJ, Buzsaki G (1996) High-frequency oscillations in the output of the hippocampal–entorhinal axis of the freely behaving rat. J Neurosci 16:3056–3066

    CAS  PubMed  Google Scholar 

  • Cossette P, Liu L, Brisebois K et al (2002) Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy. Nat Genet 31(2):184–189

    Article  CAS  PubMed  Google Scholar 

  • Csicsvari J, Hirase H, Czurko A et al (1999) Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving rat. J Neurosci 19(1):274–287

    CAS  PubMed  Google Scholar 

  • Curry DJ, Gowda A, McNichols RJ et al (2012) MR-guided stereotactic laser ablation of epileptogenic foci in children. Epilepsy Behav 24(4):408–414

    Article  PubMed  Google Scholar 

  • Cyberonics (2014) Cyberonics announces CE mark approval of the aspireSR™ generator for VNS therapy®. http://ir.cyberonics.com/releasedetail.cfm?ReleaseID=826981 Accessed 22 July 2014

  • Enatsu R, Piao Z, O'Connor T et al (2012) Cortical excitability varies upon ictal onset patterns in neocortical epilepsy: a cortico-cortical evoked potential study. Clin Neurophysiol 123:252–260

    Article  PubMed  Google Scholar 

  • Expert P, Lambiotte R, Chialvo DR et al (2010) Self-similar correlation function in brain resting-state functional magnetic resonance imaging. J R Soc Interface 8(57):472–479

    Article  PubMed Central  PubMed  Google Scholar 

  • Fisher RS, van Emde BW, Blume W et al (2005) Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46:470–472

    Article  PubMed  Google Scholar 

  • Fisher RS, Acevedo C, Arzimanoglou A et al (2014) A practical clinical definition of epilepsy. Epilepsia 55(4):475–482

    Article  PubMed  Google Scholar 

  • Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8(9):700–711

    Article  CAS  PubMed  Google Scholar 

  • Giresh E, Plenz D (2008) Neuronal avalanches organize as nested theta and beta/gamma-oscillations during development of cortical layer 2/3. Proc Natl Acad Sci U S A 105(21):7576–7581

    Article  Google Scholar 

  • Haimovici A, Tagliazucchi E, Balenzuela P et al (2013) Brain organization into resting state networks emerges at criticality on a model of the human connectome. Phys Rev Lett 110:178101

    Article  PubMed  Google Scholar 

  • Heck CN, King-Stephens D, Massey AD et al (2014) Two-year seizure reduction in adults with medically intractable partial onset epilepsy treated with responsive neurostimulation: final results of the RNS System Pivotal trial. Epilepsia 55(3):432–441

    Article  PubMed Central  PubMed  Google Scholar 

  • Hobbs JP, Smith JL, Beggs JM (2010) Aberrant neuronal avalanches in cortical tissue removed from juvenile epilepsy patients. J Clin Neurophysiol 27:380–386

    Article  PubMed  Google Scholar 

  • Hsu D, Beggs JM (2006) Neuronal avalanches and criticality: a dynamical model for homeostasis. Neurocomputing 69:1134–1136

    Article  Google Scholar 

  • Hsu D, Tang A, Hsu M et al (2007) Simple spontaneously active Hebbian learning model: homeostasis of activity and connectivity, and consequences for learning and epileptogenesis. Phys Rev E Stat Nonlin Soft Matter Phys 76(4 Pt 1):041909

    Article  PubMed  Google Scholar 

  • Hsu D, Chen W, Hsu M et al (2008) An open hypothesis: is epilepsy learned, and can it be unlearned? Epilepsy Behav 13(3):511–522

    Article  PubMed Central  PubMed  Google Scholar 

  • Hsu WY, Cheng CH, Lin MW et al (2011) Antiepileptic effects of low frequency repetitive transcranial magnetic stimulation: a meta-analysis. Epilepsy Res 96(3):231–240

    Article  PubMed  Google Scholar 

  • Iwasaki M, Enatsu R, Matsumoto R et al (2010) Accentuated cortico-cortical evoked potentials in neocortical epilepsy in areas of ictal onset. Epileptic Disord 12(4):292–302. doi:10.1684/epd.2010.0334

    PubMed  Google Scholar 

  • Johnson LA, Blakely T, Hermes D et al (2012) Sleep spindles are locally modulated by training on a brain-computer interface. Proc Natl Acad Sci U S A 109(45):18583–18588

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Klaus A, Yu S, Plenz D (2011) Statistical analyses support power law distributions found in neuronal avalanches. PLoS ONE 6(5):e19779. doi:10.1371/journal.pone.0019779

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kwan P, Brodie MJ (2000) Early identification of refractory epilepsy. N Engl J Med 342:314–319

    Article  CAS  PubMed  Google Scholar 

  • Levina A, Herrmann JM, Geisel T (2005) Dynamical synapses give rise to a power law distribution of neuronal avalanches. Neural Information Processing Systems (NIPS). Adv Neural Inf Process Syst 18:771–778

    Google Scholar 

  • Levinshtein M, Kostamovaara J, Vainshtein S (2005) Breakdown phenomena in semiconductors and semiconductor devices. World Scientific, Singapore

    Google Scholar 

  • Lüders H, Acharya J, Baumgartner C et al (1998) Semiological seizure classification. Epilepsia 39(9):1006–1013

    Article  PubMed  Google Scholar 

  • Lukasiuk K, Becker AJ (2014) Molecular biomarkers of epileptogenesis. Neurotherapeutics 11(2):319–323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Margolina A, Herrmann HJ, Stauffer D (1982) Size of largest and second-largest cluster in random percolation. Phys Lett 49A:73–75

    Article  Google Scholar 

  • McPhee SJ, Hammer GD (2010) Pathophysiology of disease: an introduction to clinical medicine, 6th edn. McGraw-Hill Medical, New York

    Google Scholar 

  • Meisel C, Storch A, Hellmeyer-Elgner S et al (2012) Failure of adaptive self-organized criticality during epileptic seizure attacks. PLoS Comput Biol 8(1):1–8

    Google Scholar 

  • Menzler K, Thiel P, Hermsen A et al (2011) The role of underlying structural cause for epilepsy classification: clinical features and prognosis in mesial temporal lobe epilepsy caused by hippocampal sclerosis versus cavernoma. Epilepsia 52(4):707–711

    Article  PubMed  Google Scholar 

  • Mountcastle VB (1957) Modality and topographic properties of single neurons of cat's somatic sensory cortex. J Neurophysiol 20(4):408–434

    CAS  PubMed  Google Scholar 

  • Mountcastle VB (1997) The columnar organization of the neocortex. Brain 120:701–722

    Article  PubMed  Google Scholar 

  • National Institute for Health and Clinical Excellence (2012) The epilepsies: the diagnosis and management of the epilepsies in adults and children in primary and secondary care. National Clinical Guideline Centre, London, pp 21–28

    Google Scholar 

  • Nunes VD, Sawyer L, Neilson J et al (2012) Diagnosis and management of the epilepsies in adults and children: summary of BMJ. BMJ 344:e281. doi: 10.1136/bmj.e281

  • Opris I (2013) Inter-laminar microcircuits across the neocortex: repair and augmentation. frontiers. In: Lebedev MA, Opris I, Casanova MF (ed) Systems neuroscience research topic: “Augmentation of brain function: facts, fiction and controversy”. doi:10.3389/fnsys.2013.00080

  • Opris I, Casanova MF (2014) Prefrontal cortical minicolumn: from executive control to disrupted cognitive processing. Brain. doi:10.1093/brain/awt359

    PubMed  Google Scholar 

  • Opris I, Hampson RE, Stanford TR et al (2011) Neural activity in frontal cortical cell layers: evidence for columnar sensorimotor processing. J Cogn Neurosci 23(6):1507–1521. doi:10.1162/jocn.2010.21534

    Article  PubMed Central  PubMed  Google Scholar 

  • Opris I, Fuqua JL, Huettl PF et al (2012a) Closing the loop in primate prefrontal cortex: inter-laminar processing. Front Neural Circuits 6:88. doi:10.3389/fncir.2012.00088

    Article  PubMed Central  PubMed  Google Scholar 

  • Opris I, Hampson RE, Gerhardt GA et al (2012b) Columnar processing in primate pFC: evidence for executive control microcircuits. J Cogn Neurosci 24(12):2334–2347

    Article  PubMed Central  PubMed  Google Scholar 

  • Opris I, Santos L, Gerhardt GA et al (2013) Prefrontal cortical microcircuits bind perception to executive control. Sci Rep 3:2285. doi:10.1038/srep02285

    Article  PubMed Central  PubMed  Google Scholar 

  • Pathan SA, Jain GK, Akhter S et al (2010) Insights into the novel three ‘D’s of epilepsy treatment: drugs, delivery systems and devices. Drug Discov Today 15(17–18):717–732

    Article  CAS  PubMed  Google Scholar 

  • Plenz D (2012) Neuronal avalanches and coherence potentials. Eur Phys J Spec Top 205(1):259–301

    Article  Google Scholar 

  • Ramsey RE, Uthman B, Ben-Menachem E et al (1991) Efficacy of vagal nerve stimulation in partial seizueres: double blind comparison of two stimulus paradigms. Epilepsia 32(suppl):90–91

    Google Scholar 

  • Rosenow F, Lüders HO (2001) Presurgical evaluation of epilepsy. Brain 124:1683–1700

    Article  CAS  PubMed  Google Scholar 

  • Royer S, Pare D (2003) Conservation of total synaptic weight through balanced synaptic depression and potentiation. Nature 422(6931):518–522

    Article  CAS  PubMed  Google Scholar 

  • Schevon CA, Trevelyan AJ, Schroeder CE et al (2009) Spatial characterization of interictal high frequency oscillations in epileptic neocortex. Brain 132(Pt 11):3047–3059

    Article  PubMed Central  PubMed  Google Scholar 

  • Seo D, Carmena JM, Rabaey JM et al (2013) Neural dust: an ultrasonic, low power solution for chronic brain-machine interfaces, Cornell University Library, arXiv:1307.2196 [q-bio.NC]

    Google Scholar 

  • Shepherd G, Grillner S (2010) Handbook of brain microcircuits. Oxford University Press, Oxford

    Book  Google Scholar 

  • Shew W, Plentz D (2013) The functional benefits of criticality in the cortex. Neuroscientist 19:88–100

    Article  PubMed  Google Scholar 

  • Sole RV, Valverde S (2008) Spontaneous emergence of modularity in cellular networks. J R Soc Interface 5:129–133

    Article  PubMed Central  PubMed  Google Scholar 

  • Staba RJ, Stead M, Worrell GA (2014) Electrophysiological biomarkers of epilepsy. Neurotherapeutics 11(2):334–346. doi:10.1007/s13311-014-0259-0

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stead M, Bower M, Brinkmann BH et al (2010) Microseizures and the spatiotemporal scales of human partial epilepsy. Brain 133(9):2789–2797. doi:10.1093/brain/awq190

    Article  PubMed Central  PubMed  Google Scholar 

  • Szentagothai J (1975) The module-concept in cerebral cortex architecture. Brain Res 95:475–496

    Article  CAS  PubMed  Google Scholar 

  • Tovar-Spinoza Z, Carter D, Ferrone D et al (2013) The use of MRI-guided laser-induced thermal ablation for epilepsy. Childs Nerv Syst 29(11):2089–2094

    Article  PubMed  Google Scholar 

  • Turrigiano GG, Nelson SB (2000) Hebb and homeostasis in neuronal plasticity. Curr Opin Neurobiol 10:358–364

    Article  CAS  PubMed  Google Scholar 

  • Vaessen MJ, Jansen JFA, Braakman HMH et al (2014) Functional and structural network impairment in childhood frontal lobe epilepsy. PLoS ONE 9(3):e90068

    Article  PubMed Central  PubMed  Google Scholar 

  • Varela F, Lachaux JP, Rodriguez E et al (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–239

    Article  CAS  PubMed  Google Scholar 

  • Wallace GG, Higgins MJ, Moultonand SE et al (2012) Nanobionics: the impact of nanotechnology on implantable medical bionic devices. Nanoscale 4:4327–4347

    Article  CAS  PubMed  Google Scholar 

  • Wang S (2013) Online seizure prediction using an adaptive learning approach. IEEE Trans Knowl Data Eng 25(12):2854–2866

    Article  Google Scholar 

  • Worrell GA, Cranstoun SD, Echauz J et al (2002) Evidence for self-organized criticality in human epileptic hippocampus. Neuroreport 13:2017–2021

    Article  PubMed  Google Scholar 

  • Wu JJS, Chang WP, Shih HC et al (2014) Cingulate seizure-like activity reveals neuronal avalanche regulated by network excitability and thalamic inputs. BMC Neurosci 15(3):1–17

    CAS  Google Scholar 

  • Yang H, Shew WL, Roy R et al (2012) Maximal variability of phase synchrony in cortical networks with neuronal avalanches. J Neurosci 32(3):1061–1072. doi:10.1523/JNEUROSCI. 2771-11.2012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yua N, Liub H, Dia Q (2013) Modulation of immunity and the inflammatory response: a new target for treating drug-resistant epilepsy. Curr Neuropharmacol 11:114–127

    Google Scholar 

  • Zijlmans M, Jiruska P, Zelmann R et al (2012) High-frequency oscillations as a new biomarker in epilepsy. Ann Neurol 71(2):169–178

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Ana Ciurea was supported by the strategic grant POSDRU/159/1.5/S/133652, “Integrated system to improve the quality of doctoral and postdoctoral research in Romania and promotion of the role of science in society” cofinanced by the European Social Found within the Sectorial Operational Program Human Resources Development 2007–2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioan Opris Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ciurea, A. et al. (2015). Modular Signatures and Neural Avalanches in Epileptic Brain Networks. In: Casanova, M., Opris, I. (eds) Recent Advances on the Modular Organization of the Cortex. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9900-3_15

Download citation

Publish with us

Policies and ethics