Skip to main content

Transient Problem for a Accreted Thermoelastic Block

  • Conference paper
Transactions on Engineering Technologies

Abstract

The thermomechanics of growing bodies studies the distributions of mechanical and thermal fields in quasistatic and dynamic processes that occur in the bodies whose composition varies in the process of deformation and heating. These types of accretion are realized in various technological processes such as laser surfacing, gas-dynamic deposition, and vapor phase deposition. Mathematical modeling of the deformations and temperature fields arising in these processes allows one to optimize the technological processes and is a topical problem of mechanics of deformable rigid body. The present work is concerned with the initial boundary-valued problem for the thermoelastic growing block. Full coupling of mechanical and thermal fields as well as relaxing of the heat flux are taken into account. A closed form solution for a body under “smoothly rigid” heat-insulated conditions for the stationary faces and the load-free conditions on the growing face is obtained. The temperature field on the growing face is analyzed numerically for various accretion scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arutyunyan, N.K., Manzhirov, A.V., Naumov, V.E.: Contact Problems in Mechanics of Growing Solids. Nauka, Moscow (1991) [in Russian]

    MATH  Google Scholar 

  2. Manzhirov, A.V.: The general non-inertial initial-boundaryvalue problem for a viscoelastic ageing solid with piecewise-continuous accretion. J. Appl. Math. Mech. 59(5), 805–816 (1995). doi:10.1016/0021-8928(95)00095-X

    Article  MATH  MathSciNet  Google Scholar 

  3. Manzhirov, A.V., Parshin, D.A.: Accretion of a viscoelastic ball in a centrally symmetric force field. Mech. Solids 41(1), 51–64 (2006)

    Google Scholar 

  4. Lychev, S.A., Lycheva, T.N., Manzhirov, A.V.: Unsteady vibration of a growing circular plate. Mech. Solids 46(2), 325–333 (2011). doi:10.3103/S002565441102021X

    Article  Google Scholar 

  5. Kuznetsov, S.I., Manzhirov, A.V., Fedotov, I.: Heat conduction problem for a growing ball. Mech. Solids 46(6), 929–936 (2011). doi:10.3103/S0025654411060124

    Article  Google Scholar 

  6. Manzhirov, A.V., Lychev, S.A.: The mathematical theory of growing solids: finite deformations. Dokl. Phys. 57(4), 160–163 (2012). doi:10.1134/S1028335812040015

    Article  MathSciNet  Google Scholar 

  7. Levitin, A.L., Lychev, S.A., Manzhirov, A.V., Shatalov, M.Y.: Nonstationary vibrations of a discretely accreted thermoelastic parallelepiped. Mech. Solids 47(6), 677–689 (2012). doi:10.3103/S0025654412060106

    Article  Google Scholar 

  8. Lychev, S.A., Manzhirov, A.V.: The mathematical theory of growing bodies: finite deformations. J. Appl. Math. Mech. 77(4), 421–432 (2013). doi:10.1016/j.jappmathmech.2013.11.011

    Article  MathSciNet  Google Scholar 

  9. Levitin, A.L., Lychev, S.A., Saifutdinov, I.N.: Transient dynamical problem for a accreted thermoelastic parallelepiped. In: Proceedings of the World Congress on Engineering 2014 (WCE 2014), London, 2–4 July 2014. Lecture Notes in Engineering and Computer Science, pp. 1196–1201 (2014)

    Google Scholar 

  10. Lychev, S.A., Senitskii, Y.E.: Nonsymmetric finite integral transformations and their applications to viscoelasticity problems. Vestnik Samar. Gos. Univ. Estestvennonauchn. Ser. Special Issue, 16–38 (2002) [in Russian]

    Google Scholar 

  11. Lychev, S.A.: Coupled dynamic thermoviscoelasticity problem. Mech. Solids 43(5), 769–784 (2008). doi:10.3103/S0025654408050129

    Article  Google Scholar 

  12. Nowacki, W.: Theory of Elasticity. PWN, Warsaw (1970)

    Google Scholar 

  13. Lychev, S.A., Manzhirov, A.V., Joubert, S.V.: Closed solutions of boundary-value problems of coupled thermoelasticity. Mech. Solids 45(4), 610–623 (2010). doi:10.3103/S0025654410040102

    Article  Google Scholar 

  14. Zhilin, P.A., Il’icheva, T.P.: Spectra and oscillation mode shapes of a rectangular parallelepiped obtained using three-dimensional theory of elasticity and theory of plates. Mech. Solids 15(2), 94–103 (1980)

    Google Scholar 

  15. Lychev, S.A., Manzhirov, A.V.: Differential operators associated with the equations of motion and nondissipative heat conduction in the Green–Naghdi theory of thermoelasticity. J. Phys. Conf. Ser. 181, 012096 (2009). doi:10.1088/1742-6596/181/1/012096

    Article  Google Scholar 

  16. Polyanin, A.D., Lychev, S.A.: Various representations of the solutions of systems of equations of continuum mechanics. Dokl. Phys. 59(3), 148–152 (2014). doi:10.1134/S1028335814030069

    Article  Google Scholar 

  17. Marciak-Kozlowska, J., Kozlowski, M.: The thermal inertia of materials heated with a laser pulse faster than relaxation time. Int. J. Thermophys. 17(5), 1099–1111 (1996). doi:10.1007/BF01441998

    Article  Google Scholar 

  18. Wang, X., Xu, X.: Thermoelastic wave indused by pulsed laser heating. Appl. Phys. A. 73(1), 107–114 (2001). doi:10.1007/s003390000593

    Article  Google Scholar 

  19. Joseph, D.D., Preziosi, L.: Heat waves. Mod. Phys. 61(1), 41–73 (1989)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation under Grant 14-19-01280.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander L. Levitin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Levitin, A.L., Lychev, S.A. (2015). Transient Problem for a Accreted Thermoelastic Block. In: Yang, GC., Ao, SI., Gelman, L. (eds) Transactions on Engineering Technologies. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9804-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9804-4_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9803-7

  • Online ISBN: 978-94-017-9804-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics