Skip to main content

The Ilímaussaq Alkaline Complex, South Greenland

  • Chapter
  • First Online:
Layered Intrusions

Part of the book series: Springer Geology ((SPRINGERGEOL))

Abstract

The Ilímaussaq complex in South Greenland is a well-studied multiphase alkaline to peralkaline intrusion of MesoProterozoic age. Most of the Ilímaussaq rocks are extremely enriched in alkalis, iron, halogens, high-field-strength elements (HFSE) and other rare elements, forming one of the most differentiated peralkaline rock suites known.

The major factors causing the extreme differentiation trends are low oxygen fugacity and silica activity as well as very low water activity in the melts. These inhibit the early exsolution of aqueous NaCl-bearing fluids and thereby facilitate the enrichment of alkalis and halogens in the melts, thereby increasing the solubility of HFSE. The unusually long crystallization interval of these rocks and the suspected continuous transition from melt to fluid results in extensive (auto)metasomatism and hydrothermal overprint. Primary mineral assemblages are therefore partially resorbed in most rock units and replaced by secondary minerals to various extents.

The Ilímaussaq complex is a well-known example of magmatic layering in peralkaline plutonic rocks. Recent investigations on mineral chemical trends in the layered rocks permit better understanding of their formation. The mechanism of crystal mats formation in the cooling magma causing crowding effects during settling of the layering-forming minerals is believed to govern the formation of the Ilímaussaq layered sequence.

Despite more than 100 years of research and hundreds of publications on Ilímaussaq, important aspects on the origin of some Ilímaussaq rocks, the architecture and deep structure of the complex and the significance of hydrocarbons and bitumens present in the peralkaline rocks remain unclear. Thus, plenty of room for further studies on these unusual rocks exists and interdisciplinary research is needed to better understand the genesis of this unique magmatic complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allaart JH (1969) The chronology and petrography of the Gardar dykes between Igaliko Fjord and Redekammen, South Greenland. Rapp Grønl Geol Under 25:26

    Google Scholar 

  • Allaart JH (1976) Ketilidian mobile belt in South Greenland. In: Escher A, Watt WS (eds) Geology of Greenland. Grønlands Geologiske Undersøgelse :121–151

    Google Scholar 

  • Andersen T, Sørensen H (2005) Stability of naujakasite in hyperagpaitic melts, and the petrology of naujakasite lujavrite in the Ilímaussaq alkaline complex, South Greenland. Mineral Mag 69:125–136

    Google Scholar 

  • Andersen S, Bohse H, Steenfelt A (1981) A geological section through the southern part of the Ilímaussaq intrusion. Rapp Grønl Geol Undersøgelse 103:39–42

    Google Scholar 

  • Andersen S, Bohse H, Steenfelt A (1988) Geological map of Greenland 1:20,000. The southern part of the Ilímaussaq complex, South Greenland. Grønlands Geologiske Undersøgelse/Geodaetisk Institut, Denmark

    Google Scholar 

  • Andersen T, Friis H (submitted) The transition from agpaitic to hyperagpaitic magmatic crystallization in the Ilímaussaq alkaline complex, South Greenland. J Petrol

    Google Scholar 

  • Arzamastsev A, Arzamastseva L, Glaznev VN, Raevskii A (1998) Petrologic-geophysical model for the structure and composition of deep levels of the Khibina and Lovozero complexes, Kola Peninsula. Petrology 6:434–450

    Google Scholar 

  • Arzamastsev AA, Bea F, Glaznev VN, Arzamastseva LV, Montero P (2001) Kola alkaline Province in the Paleozoic: evaluation of primary mantle magma composition and magma generation conditions. Russ J Earth Sci 3:1–32

    Google Scholar 

  • Bailey JC (1995) Cryptorhythmic and macrorhythmic layering in aegirine lujavrite, Ilímaussaq alkaline intrusion, South Greenland. Bull Geol Soc Den 42:1–16

    Google Scholar 

  • Bailey JC (2006) Geochemistry of boron in the Ilímaussaq alkaline complex, South Greenland. Lithos 91:319–330

    Google Scholar 

  • Bailey JC, Gwodz R (1994) Li distribution in aegirine lujavrite, Ilímaussaq alkaline intrusion, South Greenland: role of cumulus and post-cumulus processes. Lithos 31:207–225

    Google Scholar 

  • Bailey JC, Rose-Hansen J, Løvborg L, Sørensen H (1981) Evolution of Th and U whole-rock contents in the Ilímaussaq intrusion. Rapp Grønl Geol Undersøgelse 103:87–98

    Google Scholar 

  • Bailey JC, Bohse H, Gwodzdz R, Rose-Hansen J (1993) Li in minerals from the Ilímaussaq alkaline intrusion, South Greenland. Bull Geol Soc Den 40:288–299

    Google Scholar 

  • Bailey JC, Gwozdz R, Rose-Hansen J, Sørensen H (2001) Geochemical overview of the Ilímaussaq alkaline complex, South Greenland. Geol Greenl Surv Bull 190:35–53

    Google Scholar 

  • Bailey JC, Sørensen H, Andersen T, Kogarko LN, Rose-Hansen J (2006) On the origin of microrhythmic layering in arfvedsonite lujavrite from the Ilímaussaq alkaline complex, South Greenland. Lithos 91:301–318

    Google Scholar 

  • Baur A (2012) Modellierung von Schichtung in einer Magmenkammer durch Gravitationssortierung. Bachelorthesis, Universität Tübingen

    Google Scholar 

  • Beeskow B, Treloar PJ, Rankin AH, Vennemann TW, Spangenberg J (2006) A reassessment of models for hydrocarbon generation in the Khibina nepheline syenite complex, Kola Peninsula, Russia. Lithos 91:1–18

    Google Scholar 

  • Blaxland AB, van Breeman O, Steenfelt A (1976) Age and origin of agpaitic magmatism at Ilímaussaq, South Greenland: Rb–Sr study. Lithos 9:31–38

    Google Scholar 

  • Bohse H, Andersen S (1981) Review of the stratigraphic divisions of the kakortokite and lujavrite in southern Ilímaussaq. Rapp Grønl Geol Undersøgelse 103:53–62

    Google Scholar 

  • Bohse H, Brooks CK, Kunzendorf H (1971) Field observations on the Kakortokites of the Ilímaussaq intrusion, South Greenland, including mapping and analyses by portable x-ray fluorescence equipment for zirconium and niobium. Rapp Grønl Geol Undersøgelse 38:43

    Google Scholar 

  • Bons PD, Baur A, Elburg MA, Lindhuer MJ, Marks MAW, Soesoo A, van Milligen BP, Walte NP (2015) Layered intrusions and traffic jams. Geology. 43:71–74

    Google Scholar 

  • Botcharnikov RE, Koepke J, Holtz F, McCammon C, Wilke M (2005) The effect of water activity on the oxidation and structural state of Fe in a ferro-basaltic melt. Geochim Cosmochim Acta 69:5071–5085

    Google Scholar 

  • Bridgwater D, Coe K (1970) The role of stoping in the emplacement of the giant dikes of Isortoq, South Greenland. Geol J Special issue 2:67–78

    Google Scholar 

  • Bridgwater D, Harry WT (1968) Anorthosite xenoliths and plagioclase megacrysts in Precambrian intrusions of South Greenland. Medd om Grønl 185:243

    Google Scholar 

  • Derrey I (2012) Element transport and mineral replacement reactions during alkali contact metamorphism: effects on the Julianehåb granite induced by the Ilímaussaq intrusion, SW-Greenland. Diplomathesis, Universität Tübingen

    Google Scholar 

  • Eales HV, Cawthorn RG (1996) The Bushveld Complex. In: Cawthorn RG (Ed) Layered intrusions. Elsevier Science Ltd, Amsterdam, pp 181–230

    Google Scholar 

  • Emeleus CH, Upton BGJ (1976) The Gardar period in Southern Greenland. In: Escher A, Watt WS (eds) Geology of Greenland. Grønlands Geologiske Undersøgelse :152–181

    Google Scholar 

  • Emeleus CH, Cheadle MJ, Hunter RH, Upton BGJ, Wadsworth WJ (1996) The rum layered suite. In: Cawthorn RG (ed) Layered intrusions. Elsevier Science Ltd, pp 403–440

    Google Scholar 

  • Engell J (1973) A closed system crystal-fractionation model for the agpaitic Ilímaussaq intrusion, South Greenland, with special reference to the lujavrites. Bull Geol Soc Den 22:334–362

    Google Scholar 

  • Engell J, Hansen J, Jensen M, Kunzendorf H, Løvborg L (1971) Beryllium mineralization in the Ilímaussaq Intrusion, South Greenland, with description of a field beryllometer and chemical methods. Rapp Grønl Geol Undersøgelse 33:40

    Google Scholar 

  • Féménias O, Coussaert N, Brassiness S, Demaiffe D (2005) Emplacement processes and cooling history of layered cyclic unit II-7 from the Lovozero alkaline massif (Kola Peninsula, Russia). Lithos 83:371–393

    Google Scholar 

  • Ferguson J (1964) Geology of the Ilímaussaq alkaline intrusion, South Greenland. Bull Grønl Geol Undersøgelse 39:82

    Google Scholar 

  • Ferguson J (1970) The significance of the kakortokite in the evolution of the Ilímaussaq intrusion, South Greenland. Bull Grønl Geol Undersøgelse 89:193

    Google Scholar 

  • Forsberg R, Rasmussen KL (1978) Gravity and rock densities in the Ilímaussaq area, South Greenland. Rapp Grønl Geol Undersøgelse 90:81–84

    Google Scholar 

  • Galakhov A (1975) Petrology of the Khibina alkaline massif. Nauka, Leningrad,  296

    Google Scholar 

  • Garde AA, Hamilton MA, Chadwick B, Grocott J, McCaffrey KJW (2002) The Ketilidian orogen of South Greenland: geochronology, tectonics, magmatism, and fore-arc accretion during PalaeoProterozoic oblique convergence. Can J Earth Sci 39:765–793

    Google Scholar 

  • Gaweda A, Szopa K (2011) The origin of magmatic layering in the high tatra granite, Central Western Carpathians-implications for the formation of granitoid plutons. Trans Royal Soc of Edinb 102:129–144

    Google Scholar 

  • Giehl C, Marks MAW, Nowak M (2012) Phase relations and liquid lines of descent of an iron-rich peralkaline phonolitic melt: an experimental study. Contrib Mineral Petrol 165:283–304

    Google Scholar 

  • Giehl C, Marks MAW, Nowak M (2014) An experimental study on the influence of fluorine and chlorine on phase relations in peralkaline phonolitic melts. Contrib Mineral Petrol 167:977

    Google Scholar 

  • Giuli C, Alonso-Mori R, Cicconi MR, Paris E, Glatzel P, Eeckhout SG, Scaillet B (2012) Effect of alkalis on the Fe oxidation state and local environment in peralkaline rhyolitic glasses. Am Mineral 97:468–475

    Google Scholar 

  • GMEL (2015) Greenland minerals and energy Ltd. http://www.ggg.gl. Accessed 15 Feb 2015

  • Goodenough KM, Upton BGJ, Ellam RM (2002) Long-term memory of subduction processes in the lithospheric mantle: evidence from the geochemistry of basic dykes in the Gardar Province of South Greenland. J Geol Soc London 159:705–714

    Google Scholar 

  • Graser G, Markl G (2008) Ca-rich ilvaite-epidote-hydrogarnet endoskarns: a record of late-magmatic fluid influx into the persodic Ilímaussaq complex, South Greenland. J Petrol 49:239–265

    Google Scholar 

  • Graser G, Potter J, Köhler J, Markl G (2008) Isotope, major, minor and trace element geochemistry of late-magmatic fluids in the peralkaline Ilímaussaq intrusion, South Greenland. Lithos 106:207–221

    Google Scholar 

  • Halama R, Waight T, Markl G (2002) Geochemical and isotopic zoning patterns of plagioclase megacrysts in gabbroic dykes from the Gardar Province, South Greenland: implications for crystallisation processes in anorthositic magmas. Contrib Mineral Petrol 144:109–127

    Google Scholar 

  • Halama R, Wenzel T, Upton BGJ, Siebel W, Markl G (2003) A geochemical and Sr–Nd–O isotopic study of the Proterozoic Eriksfjord Basalts, Gardar Province, South Greenland: reconstruction of an OIB-signature in crustally contaminated rift-related basalts. Mineral Mag 67:831–853

    Google Scholar 

  • Halama R, Marks MAW, Brügmann GE, Siebel W, Wenzel T, Markl G (2004) Crustal contamination of mafic magmas: evidence from a petrological, geochemical and Sr–Nd–Os–O isotopic study of the Proterozoic Isortoq dike swarm, South Greenland. Lithos 74:199–232

    Google Scholar 

  • Hamilton EI (1964) The geochemistry of the northern part of the Ilímaussaq intrusion, S.W. Greenland. Bull Grønl Geol Undersøgelse 42:104

    Google Scholar 

  • Hettmann K, Wenzel T, Marks MAW, Markl G (2012) The sulfur speciation in S-bearing minerals: new constraints by a combination of electron microprobe analysis and DFT calculations with special reference to sodalite-group minerals. Am Mineral 97:1653–1661

    Google Scholar 

  • Hettmann K, Marks MAW, Kreissig K, Zack T, Wenzel T, Rehkämper M, Jacob DE, Markl G (2014) The geochemistry of Tl and its isotopes during magmatic and hydrothermal processes: the peralkaline Ilímaussaq complex, southwest Greenland. Chem Geol 366:1–13

    Google Scholar 

  • Holloway JR, Jakobsson S (1986) Volatile solubilities in magmas: transport of volatiles from mantles to planet surface. J Geophys Res 91:D505–D508

    Google Scholar 

  • Kaliwoda M, Marschall H, Marks MAW, Ludwig T, Altherr R, Markl G (2011) Lithium, beryllium, boron and boron isotope systematics in the peralkaline Ilímaussaq intrusion (South Greenland) and its granitic country rocks: interplay between magmatic and hydrothermal processes. Lithos 125:51–64

    Google Scholar 

  • Karup-Møller S (1978) The ore minerals of the Ilímaussaq intrusion: their mode of occurence and their conditions of formation. Bull Grønl Geol Undersøgelse 127:51

    Google Scholar 

  • Karup-Møller S, Rose-Hansen J (2013) New data on eudialyte decomposition minerals from kakortokites and associated pegmatites of the Ilímaussaq complex, South Greenland. Bull Geol Soc Den 61:47–70

    Google Scholar 

  • Karup-Møller S, Rose-Hansen J, Sørensen H (2010) Eudialyte decomposition minerals with new hithero undescribed phases from the Ilímaussaq complex, South Greenland. Bull Geol Soc Den 58:75–88

    Google Scholar 

  • Khomyakov A (1995) Mineralogy of hyperagpaitic alkaline rocks. Scientific Publications, Clarendon, Oxford, p 222

    Google Scholar 

  • Kogarko LN (1977) Problems of the genesis of agpaitic magmas. Nauka, Moskow, p 294

    Google Scholar 

  • Kogarko LN, Krigmann LD (1970) Phase equilibria in the system nepheline-NaF. Geochem Int 7:103–107

    Google Scholar 

  • Kogarko LN, Romanchev BP (1983) Phase equilibria in alkaline melts. Int Geol Rev 25:534–546

    Google Scholar 

  • Köhler J, Schönenberger J, Upton B, Markl G (2009) Halogen and trace-element geochemistry in the Gardar Province, South Greenland: subduction-related metasomatism and fluid exsolution from alkalic melts. Lithos 113:731–747

    Google Scholar 

  • Konnerup-Madsen J (1980) Fluid inclusions in minerals from igneous rocks belonging to Precambrian continental Gardar rift Province, South Greenland: the alkaline Ilímaussaq intrusion and the alkali acidic igneous complexes. PhD Thesis, University of Copenhagen 140 pp

    Google Scholar 

  • Konnerup-Madsen J (1984) Composition of fluid inclusions in granites and quartz syenites from the gardar continental rift Province (South Greenland). Bull Minéral 107:327–340

    Google Scholar 

  • Konnerup-Madsen J (2001) A review of the composition and evolution of hydrocarbon gases during solidification of the Ilímaussaq alkaline complex, South Greenland. Geol Greenl Surv Bull 190:159–166

    Google Scholar 

  • Konnerup-Madsen J, Rose-Hansen J (1982) Volatiles associated with alkaline igneous rift activity: fluid inclusions in the Ilímaussaq intrusion and the Gardar granitic complexes (South Greenland). Chem Geol 37:79–93

    Google Scholar 

  • Konnerup-Madsen J, Rose-Hansen J (1984) Composition and significance of fluid inclusions in the Ilímaussaq peralkaline granite, South Greenland. Bull Minéral 107:317–326

    Google Scholar 

  • Konnerup-Madsen J, Larsen E, Rose-Hansen J (1979) Hydrocarbon-rich fluid inclusions in minerals from the alkaline Ilímaussaq intrusion, South Greenland. Bull Minéral 102:642–653

    Google Scholar 

  • Konnerup-Madsen J, Rose-Hansen J, Larsen E (1981) Hydrocarbon gases asociated with alkaline igneous activity: evidence from compositions of fluid inclusions. Rapp Grønl Geol Undersøgelse 103:99–108

    Google Scholar 

  • Konnerup-Madsen J, Dubessy J, Rose-Hansen J (1985) Combined Raman microprobe spectrometry and microthermometry of fluid inclusions in minerals from igneous rocks of the Gardar Province (South Greenland). Lithos 18:271–280

    Google Scholar 

  • Konnerup-Madsen J, Kreulen R, Rose-Hansen J (1988) Stable isotope characteristics of hydrocarbon gases in the alkaline Ilímaussaq complex, South Greenland. Bull Minéral 111:567–576

    Google Scholar 

  • Kramm U, Kogarko LN (1994) Nd and Sr isotope signatures of the Khibina and Lovozero agpaitic centres, Kola Province, Russia. Lithos 32:225–242

    Google Scholar 

  • Krumrei TV, Villa IM, Marks MAW, Markl G (2006) A 40Ar/39Ar and U/Pb isotopic study of the Ilímaussaq complex, South Greenland: implications for the 40K decay constant and for the duration of magmatic activity in a peralkaline complex. Chem Geol 227:258–273

    Google Scholar 

  • Krumrei TV, Pernicka E, Kaliwoda M, Markl G (2007) Volatiles in a peralkaline system: abiogenic hydrocarbons and F–Cl–Br systematics in the naujaite of the Ilímaussaq intrusion, South Greenland. Lithos 95:298–314

    Google Scholar 

  • Laier T, Nytoft HP (2012) Bitumen biomarkers in the mid-Proterozoic Ilímaussaq intrusion, Southwest Greenland-a challenge to the mantle gas theory. Mar Petrol Geol 30:50–65

    Google Scholar 

  • Larsen LM (1976) Clinopyroxenes and coexisting mafic minerals from the alkaline Ilímaussaq intrusion, South Greenland. J Petrol 17:258–290

    Google Scholar 

  • Larsen JG (1977a) Petrology of the late lavas of the Eriksfjord formation, Gardar Province, South Greenland. Medd om Grønl 53:31

    Google Scholar 

  • Larsen LM (1977b) Aenigmatites from the Ilímaussaq intrusion, South Greenland: chemistry and petrological implications. Lithos 10:257–270

    Google Scholar 

  • Larsen LM (1981) Chemistry of feldspars in the Ilímaussaq augite syenite with additional data on some other minerals. Rapp Grønl Geol Unders 103:31–37

    Google Scholar 

  • Larsen LM, Sørensen H (1987) The Ilímaussaq intrusion-progressive crystallization and formation of layering in an agpaitic magma. In: Fitton JG, Upton, BGJ (eds) Alkaline igneous rocks, Geological Society of London, Special Publication 30:473–488

    Google Scholar 

  • Larsen LM, Steenfelt A (1974) Alkali loss and retention in an iron-rich peralkaline phonolite dyke from the Gardar Province, South Greenland. Lithos 7:81–90

    Google Scholar 

  • Lauder W (1964) Mat formation and crystall settling in magma. Nature 202:1100–1101

    Google Scholar 

  • Lindhuber M, Marks MAW, Bons PD, Wenzel T, Markl G (in press) Crystal mat-formation as an igneous layering-forming process: textural and geochemical evidence from the ‘lower layered’ nepheline syenite sequence of the Ilímaussaq complex, South Greenland. Lithos

    Google Scholar 

  • Linnen RL, Keppler H (2002) Melt composition control of Zr/Hf fractionation in magmatic processes. Geochim Cosmochim Acta 66:3293–3301

    Google Scholar 

  • Mann U, Marks MAW, Markl G (2006) Influence of oxygen fugacity on mineral compositions in peralkaline melts: the Katzenbuckel volcano, Southwest Germany. Lithos 91:262–285

    Google Scholar 

  • Markl G (2001a) Stability of Na–Be minerals in late-magmatic fluids of the Ilímaussaq alkaline complex, South Greenland. Geol Greenl Surv Bull 190:145–158

    Google Scholar 

  • Markl G (2001b) A new type of silicate liquid immiscibility in peralkaline nepheline syenites (lujavrites) of the Ilímaussaq complex, South Greenland. Contrib Mineral Petrol 141:458–472

    Google Scholar 

  • Markl G, Baumgartner L (2002) pH changes in peralkaline late-magmatic fluids. Contrib Mineral Petrol 144:331–346

    Google Scholar 

  • Markl G, Marks MAW, Schwinn G, Sommer H (2001) Phase equilibrium constraints on intensive crystallization parameters of the Ilímaussaq complex, South Greenland. J Petrol 42:2231–2258

    Google Scholar 

  • Markl G, Marks MAW, Frost BR (2010) On the controls of oxygen fugacity in the generation and crystallization of peralkaline melts. J Petrol 51:1831–1847

    Google Scholar 

  • Marks MAW, Markl G (2001) Fractionation and assimilation processes in the alkaline augite syenite unit of the Ilímaussaq intrusion, South Greenland, as deduced from phase equilibria. J Petrol 42:1947–1969

    Google Scholar 

  • Marks MAW, Markl G (2003) Ilímaussaq ‘en miniature’: closed-system fractionation in an agpaitic dyke rock from the Gardar Province, South Greenland. Mineral Mag 67:893–919

    Google Scholar 

  • Marks MAW, Vennemann TW, Siebel W, Markl G (2003) Quantification of magmatic and hydrothermal processes in a peralkaline syenite- alkali granite complex based on textures, phase equilibria, and stable and radiogenic isotopes. J Petrol 44:1247–1280

    Google Scholar 

  • Marks MAW, Vennemann T, Siebel W, Markl G (2004) Nd-, O-, and H-isotopic evidence for complex, closed-system fluid evolution of the peralkaline Ilímaussaq intrusion, South Greenland. Geochim Cosmochim Acta 68:3379–3395

    Google Scholar 

  • Marks MAW, Rudnick R, Vennemann T, McCammon C, Markl G (2007) Arrested kinetic Li isotope fractionation at the margin of the Ilímaussaq complex, South Greenland: evidence for open-system processes during final cooling of peralkaline igneous rocks. Chem Geol 246:207–230

    Google Scholar 

  • Marks MAW, Hettmann K, Schilling J, Frost BR, Markl G (2011) The mineralogical diversity of alkaline igneous rocks: critical factors for the transition from miaskitic to agpaitic phase assemblages. J Petrol 52:439–455

    Google Scholar 

  • McBirney AR (1996) The Skaergaard intrusion. In: Cawthorn RG (ed) Layered intrusions. Elsevier Science Ltd, New York, pp 147–180

    Google Scholar 

  • McCallum IS (1996) The Stillwater complex. In: Cawthorn RG (ed) Layered intrusions. Elsevier Science Ltd, pp 441–484

    Google Scholar 

  • Morse SA (1969) The Kiglapait layered intrusion, labrador. Geol Soc Am Memoir 112:204

    Google Scholar 

  • Müller-Lorch D, Marks MAW, Markl G (2007) Na and K distribution in agpaitic pegmatites. Lithos 95:315–330

    Google Scholar 

  • Mysen BO, Yamashita S (2010) Speciation of reduced C–O–H volatiles in coexisting fluids and silicate melts determined in-situ to ~ 1.4 GPa and 800 °C. Geochim Cosmochim Acta 74:4577–4588

    Google Scholar 

  • Namur O, Abily B, Boudreau A, Blanchette F, Bush JWM, Ceuleneer G, Charlier B, Donaldson CH, Duchesne JC, Higgins MD, Morata D, Nielsen TFD, O’Driscoll B, Pang KN, Peacock T, Spandler C, Toramaru A, Veksler I (2015) Igneous Layering in Basaltic Magma Chambers. In Charlier et al. (Editors) Layered Intrusions, Springer Geology, Dordrecht, in press. (DOI 10.1007/978-94-017-9652-1_2)

    Google Scholar 

  • Naslund HR, McBirney AR (1996) Mechanisms of formation of igneous layering. In: Cawthorn RG (ed) Layered intrusions. Elsevier Science Ltd, Shannon, pp 1–44

    Google Scholar 

  • Nielsen TF, Bernstein S (2009) Chemical variations in the triple group of the skaergard intrusion: insights for the mineralization and crystallization process. AGU Fall meeting 2009, Abstract V21A 1956

    Google Scholar 

  • Nielsen BL, Steenfelt A (1979) Intrusive events at Kvanefjeld in the Ilímaussaq igneous complex. Bull Geol Soc Den 27:143–155

    Google Scholar 

  • Nivin VA (2002) Gas concentrations in minerals with reference to the problem of the genesis of hydrocarbon gases in rocks of the Khibiny and Lovozero complexes. Geochem Int 40:883–898

    Google Scholar 

  • Nivin VA, Devirts AL, Lagutina YP (1995) The origin of the gas phase in the Lovozero massif based on hydrogen-isotope data. Geochem Int 32:65–71

    Google Scholar 

  • Nivin VA, Belov NI, Treloar PJ, Timofeyef VV (2001) Relationships between gas geochemistry and release rates and the geochemical state of igneous rock massifs. Tectonophysics 336:233–244

    Google Scholar 

  • Nivin VA, Treloar PJ, Konopleva NG, Ikorsky SV (2005) A review of the occurence, form and origin of C-bearing species in the Khibiny alkaline igneous complex, Kola Peninsula, Russia. Lithos 85:93–112

    Google Scholar 

  • O’Driscoll B, Troll VR, Reavy RJ, Turner P (2006) The Great Eucrite intrusion of Ardnamurchan, Scotland: reevaluating the ring-dike concept. Geology 34:189–192

    Google Scholar 

  • Parsons I (2012) Full stop for mother earth. Elements 8:396–398

    Google Scholar 

  • Paslick CR, Halliday AN, Davies GR, Mezger K, Upton BGJ (1993) Timing of Proterozoic magmatism in the Gardar Province, southern Greenland. Bull Geol Soc Am 105:272–278

    Google Scholar 

  • Petersen OV (2001) List of minerals identified in the Ilímaussaq alkaline complex, South Greenland. Geol Greenl Surv Bull 190:25–34

    Google Scholar 

  • Petersilie IA, Sørensen H (1970) Hydrocarbon gases and bituminous substances in rocks from the Ilímaussaq alkaline intrusion, South Greenland. Lithos 3:59–76

    Google Scholar 

  • Pfaff K, Krumrei TV, Marks M, Wenzel T, Rudolf T, Markl G (2008) Chemical and physical evolution of the ‘lower layered series’ from the nepheline syenitic Ilímaussaq intrusion, South Greenland: implications for the origin of magmatic layering in peralkaline felsic liquids. Lithos 106:280–296

    Google Scholar 

  • Potter J, Konnerup-Madsen J (2003) A review of the occurence and origin of hydrocarbons in igneous rocks. In: Petford N, McCaffrey KJW (eds) Hydrocarbons in crystalline rocks, Geological Society Special Publication 214:151–173

    Google Scholar 

  • Potter J, Longstaffe FJ (2007) A gas-chromatograph continuous flow isotope ratio mass-spectrometry method for 13C and D measurement of complex fuid inclusion volatiles: examples from the Khibina alkaline igneous complex, Northwest Russia and the South Wales Coalfelds. Chem Geol 244:186–201

    Google Scholar 

  • Potter J., Rankin AH, Treloar PJ (2004) Abiogenic Fischer-Tropsch synthesis of hydrocarbons in alkaline igneous rocks: fluid inclusion, textural and isotopic evidence from the Lovozero complex, N.W. Russia. Lithos 75:311–330

    Google Scholar 

  • Potter J, Rankin AH, Treloar PJ, Nivin VA, Ting W, Ni P (1998) A preliminary study of methane inclusions in alkaline igneous rocks of the Kola igneous Province, Russia: implications for the origin of methane in igneous rocks. Eur J Mineral 10:1167–1180

    Google Scholar 

  • Poulsen V (1964) The sandstones of the Precambrian Eriksfjord formation in South Greenland. Rapp Grønl Geol Under 2:16

    Google Scholar 

  • Pupier E, Barbey O, Toplis M, Bussy F (2008) Igneous layering, fractional crystallization and growth of granitic plutons: the Dolbel Batholith in SW Niger. J Petrol 49:1043–1068

    Google Scholar 

  • Ratschbacher B, Marks MAW, Wenzel T, Bons P, Markl G (submitted) Emplacement and geochemical evolution of highly evolved nepheline syenites in the composite alkaline to peralkaline Ilímaussaq complex, SW Greenland. Lithos

    Google Scholar 

  • Rose-Hansen J, Sørensen H (2001) Minor intrusions of peralkaline microsyenite in the Ilímaussaq alkaline complex, South Greenland. Bull Geol Soc Den 48:9–29

    Google Scholar 

  • Rose-Hansen J, Sørensen H (2002) Geology of the Lujavrites from the Ilímaussaq alkaline complex South Greenland, with information from seven bore holes. Medd om Grønl Geosci 40:58

    Google Scholar 

  • Rønsbo JG (1989) Coupled substitutions involving REEs and Na and Si in apatites in alkaline rocks from the Ilímaussaq intrusion, South Greenland, and the petrological implications. Am Mineral 74:896–901

    Google Scholar 

  • Rønsbo JG (2008) Apatite in the Ilímaussaq alkaline complex: occurrence, zonation and compositional variation. Lithos 106:71–82

    Google Scholar 

  • Sass JH, Nielsen BL, Wollenberg HA, Munroe RJ (1972) Heat flow and surface radioactivity at two sites in South Greenland. J Geophys Res 77(32):6435–6444

    Google Scholar 

  • Schilling J, Wu F-Y, McCammon C, Wenzel T, Marks MAW, Pfaff K, Jacob DE, Markl G (2011) The compositional variability of eudialyte-group minerals. Mineral Mag 75:87–115

    Google Scholar 

  • Schmid C (2008) Die Pulaskite der Ilímaussaq Intrusion in Südgrönland. Diplomathesis, Universität Tübingen

    Google Scholar 

  • Schönenberger J, Marks M, Wagner T, Markl G (2006) Fluid-rock interaction on autoliths of agpaitic nepheline syenites in the Ilímaussaq intrusion, South Greenland. Lithos 91:331–351

    Google Scholar 

  • Scott HP, Hemley RJ, Mao HK, Herschbach DR, Fried LE, Howard WM, Bastea S (2004) Generation of methane in the Earth’s mantle: in situ high pressure-temperature measurements of carbonate reduction. PNAS 101:14023–14026

    Google Scholar 

  • Sobolev AV, Bazarova TY, Shugorova NA, Bazarov LS, Dolgov YA, Sørensen H (1970) A preleminary examination of fluid inclusions in nepheline, sorensenite, tugtupite and chkalovite from the Ilímaussaq alkaline intrusion, South Greenland. Bull Grønl Geol Under 81:32

    Google Scholar 

  • Sørensen H (1962) On the occurrence of steenstrupine in the Ilímaussaq massif, Southwest Greenland. Bull Grønl Geol Under 32:251

    Google Scholar 

  • Sørensen H (1968) Rhythmic igneous layering in peralkaline intrusions: an essay review on Ilímaussaq (Greenland) and Lovozero (Kola, USSR). Lithos 2:261–283

    Google Scholar 

  • Sørensen H (1978) The position of the augite syenite and pulaskite in the Ilímaussaq intrusion, South Greenland. Bull Geol Soc Den 27:15–23

    Google Scholar 

  • Sørensen H (1992) Agpaitic nepheline syenites: a potential source of rare elements. Appl Geochem 7:417–427

    Google Scholar 

  • Sørensen H (1997) The agpaitic rocks-an overview. Mineral Mag 61:485–498

    Google Scholar 

  • Sørensen H (2001) Brief introduction to the geology of the Ilímaussaq alkaline complex, South Greenland, and its exploration history. Geol Greenl Surv Bull 190:7–24

    Google Scholar 

  • Sørensen H (2006) The Ilímaussaq alkaline complex, South Greenland-an overview of 200 years of research and an outlook. Medd om Grønl Geosci 45:10–31

    Google Scholar 

  • Sørensen H, Larsen LM (1987) Layering in the Ilímaussaq alkaline intrusion, South Greenland. In: Parsons I (ed) Origins of igneous layering. D. Reidel, Dordrecht, pp 1–28

    Google Scholar 

  • Sørensen H, Larsen LM (2001) The hyper-agpaitic stage in the evolution of the Ilímaussaq alkaline complex, South Greenland. Geol Greenl Surv Bull 190:83–94

    Google Scholar 

  • Sørensen H, Hansen J, Bondesen E (1969) Preliminary account of the geology of the Kvanefjeld area of the Ilímaussaq intrusion, South Greenland. Rapp Grønl Geol Under 18:40

    Google Scholar 

  • Sørensen H, Rose-Hansen J, Nielsen BL, Løvborg L, Sørensen E, Lundgaard T (1974) The uranium deposit at Kvanefjeld, the Ilímaussaq intrusion, South Greenland. Rapp Grønl Geol Under 60:54

    Google Scholar 

  • Sørensen H, Bailey JC, Kogarko LN, Rose-Hansen J, Karup-Møller S (2003) Spheroidal structures in arfvedsonite lujavrite, Ilímaussaq alkaline complex, South Greenland-an example of macro-scale liquid immiscibility. Lithos 70:1–20

    Google Scholar 

  • Sørensen H, Bohse H, Bailey JC (2006) The origin and mode of emplacement of lujavrites in the Ilímaussaq alkaline complex, South Greenland. Lithos 91:286–300

    Google Scholar 

  • Sørensen H, Bailey JC, Rose-Hansen J (2011) The emplacement and crystallization of the U–Th-REE-rich agpaitic and hyperagpaitic lujavrites at Kvanefjeld, Ilímaussaq alkaline complex, South Greenland. Bull Geol Soc Den 59:69–92

    Google Scholar 

  • Steenfelt A (1981) Field relations in the roof zone of the Ilímaussaq intrusion with special reference to the position of the alkali acid rocks. Rapp Grønl Geol Under 103:43–52

    Google Scholar 

  • Stevenson R, Upton BGJ, Steenfelt A (1997) Crust-mantle interaction in the evolution of the Ilímaussaq complex, South Greenland: Nd isotopic studies. Lithos 40:189–202

    Google Scholar 

  • TANBREEZ (2014) TANBREEZ Mining Greenland A/S. http://www.tanbreez.com. Accessed 2 Aug 2014

  • Thorning L, Stemp RW (1997) Projects Aeromag 1995 and Aeromag 1996. Results from aeromagnetic surveys over South Greenland (1995) and South-West and southern West Greenland (1996). Dan Grønl Geol Under Rapp 11:44

    Google Scholar 

  • Upton BGJ (1991) Gardar mantle xenoliths: Iglutalik, South Greenland. Rapp Grønl Geol Under 150:37–43

    Google Scholar 

  • Upton BGJ (2013) Tectono-magmatic evolution of the southern branch of the Gardar rift in the late Gardar period. Geol Surv Den Greenl Bull 29:124

    Google Scholar 

  • Upton BGJ, Emeleus CH (1987) Mid-Proterozoic alkaline magmatism in southern Greenland: the Gardar Province. In: Fitton JG, Upton BGJ (eds) Alkaline igneous rocks, Geological Society of London, Special Publication 30:449–471

    Google Scholar 

  • Upton B, Pulvertaft TCR (1961) Textural features of some contrasted igenous cumulates from South Greenland. Medd om Grønl 123:1–29

    Google Scholar 

  • Upton BGJ, Martin AR, Stephenson D (1990) Evolution of the tugtutôq central complex, South Greenland; a high-level, rift-axial, late-Gardar centre. J Volcanol Geotherm Res 43:195–214

    Google Scholar 

  • Upton BGJ, Parsons I, Emeleus CH, Hodson M (1996) Layered alkaline igneous rocks of the Gardar Province, South Greendland. In: Cawthorn RG (ed) Layered intrusions. Elsevier Science Ltd, Tokyo pp 331–364

    Google Scholar 

  • Upton BGJ, Emeleus CH, Heaman LM, Goodenough KM, Finch A (2003) Magmatism of the mid-Proterozoic Gardar Province, South Greenland: chronology, petrogenesis and geological setting. Lithos 68:43–65

    Google Scholar 

  • Ussing NV (1912) Geology of the country around Julianehaab, Greenland. Medd om Grønl 38:426

    Google Scholar 

  • Vlasov K, Kuzmenko M, Eskova E (1966) The Lovozero alkali massif. Oliver and Boyd, Edinburgh, p 627

    Google Scholar 

  • Waight T, Baker J, Willigers B (2002) Rb isotope dilution analyses by MC-ICPMS using Zr to correct for mass fractionation: towards improved Rb–Sr geochronology? Chem Geol 186:99–116

    Google Scholar 

  • Watson EB (1979) Zircon saturation in felsic liquids: experimental results and applications to trace element geochemistry. Contrib Mineral Petrol 70:407–419

    Google Scholar 

  • Wilson AH (1996) The Great Dyke of Zimbabwe. In: Cawthorn RG (ed) Layered intrusions. Elsevier Science Ltd, pp 365–402

    Google Scholar 

  • Zhang C, Duan Z (2010) A model for C–O–H fluid in the Earth’s mantle. Geochim Cosmochim Acta 73:2089–2102

    Google Scholar 

  • Zhang T, Kross BM (2001) Experimental investigation on the carbon isotope fractionation of methane during gas migration by diffusion through sedimentary rocks at elevated temperature and pressure. Geochim Cosmochim Acta 65:2723–2742

    Google Scholar 

  • Zirner ALK, Marks MAW, Wenzel T, Jacob DE, Markl G (submitted) Rare earth elements in apatite as a monitor of crystallization and metasomatic processes: the Ilimaussaq intrusion, South Greenland, as a type example. Lithos

    Google Scholar 

Download references

Acknowledgements

The funding of various Ilímaussaq- and Gardar-related projects provided by the Deutsche Forschungsgemeinschaft is gratefully acknowledged. Also, we highly appreciate the work of numerous student assistants, Diploma students, and PhD students, which together contributed to our mineralogical, petrological and geochemical knowledge on the Ilímaussaq area over the past 15 years. Special gratitude is owed to Thomas Wenzel. He provided critical support during microprobe work and brought many of the past Ilímaussaq projects to a success, because of his expertise, his steady interest in this work and his constructive comments on an earlier version of this manuscript (as well of several others in the past). Many constructive and fruitful discussions with numerous colleagues enhanced our understanding on the Gardar Province and the Ilímaussaq area. Amongst others we would like to thank Brian Upton, Henning Bohse and Paul Bons. We are also grateful to Salik Hard and co-workers of the Narsaq tourist office, Harry Andersen, Peter Lindberg, Helgi Jonasson and Stefán Magnússon, who provided logistic support during various field campaigns in South Greenland. We also thank Lotte Melchior Larsen, Tom Andersen and Troels F.D. Nielsen for their very detailed and constructive reviews, which helped us to improve the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. W. Marks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Marks, M., Markl, G. (2015). The Ilímaussaq Alkaline Complex, South Greenland. In: Charlier, B., Namur, O., Latypov, R., Tegner, C. (eds) Layered Intrusions. Springer Geology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9652-1_14

Download citation

Publish with us

Policies and ethics