Skip to main content

Malignant Rhabdoid Tumor: Epigenetic Mechanism of Tumorogenesis

  • Chapter
  • First Online:
Epigenetics Territory and Cancer

Abstract

This chapter explains the epigenetic mechanism of tumor formation in an aggressive and rare childhood malignancy, malignant rhabdoid tumors (MRT). In the majority of these tumors hSNF5/INI1 is inactivated via deletion or mutation.hSNF5/INI1 is a member of the ATP-dependent hSWI-SNF chromatin remodeling complex. This gene is a tumor suppressor gene. hSNF5 can function in both transcription activation and repression of genome. Re-expression of hSNF5 in MRT cells causes an accumulation in G0/G1, cellular senescence and apoptosis. Cellular senescence is largely the result of direct transcriptional activation of the tumor-suppressor p16INK4a by hSNF5. Whole genome expression profiling of hSNF5 cells revealed expression change of many E2F targets, including mitotic control genes and pre-replication complex. The balance between SWI/SNF activation and Polycomb group (PcG) silencing affects epigenetic control of the INK4b-ARF-INK4a locus in MRT cells. PcG proteins regulate higher order chromatin structure dynamically, to balance cell proliferation and differentiation. SWI/SNF mediates eviction of the Polycomb group repressive complex1 (PRC1) and Polycomb group repressive complex2 (PRC2) and extensive chromatin reprogramming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ae K, Kobayashi N, Sakuma R, Ogata T, Kuroda H, Kawaguchi N, Shinomiya K, Kitamura Y (2002) Chromatin remodeling factor encoded by ini1 induces G1 arrest and apoptosis in ini1-deficient cells. Oncogene 21(20):3112–3120

    Article  CAS  PubMed  Google Scholar 

  • Alimova I, Birks DK, Harris PS, Knipstein JA, Venkataraman S, Marquez VE, Foreman NK, Vibhakar R (2013) Inhibition of EZH2 suppresses self-renewal and induces radiation sensitivity in atypical rhabdoid teratoid tumor cells. Neuro Oncol 15(2):149–160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Banine F, Bartlett C, Gunawardena R, Muchardt C, Yaniv M, Knudsen ES, Weissman BE, Sherman LS (2005) SWI/SNF chromatin-remodeling factors induce changes in DNA methylation to promote transcriptional activation. Cancer Res 65(9):3542–3547

    Article  CAS  PubMed  Google Scholar 

  • Barker N, Hurlstone A, Musisi H, Miles A, Bienz M, Clevers H (2001) The chromatin remodelling factor Brg-1 interacts with beta-catenin to promote target gene activation. EMBO J 20(17):4935–4943

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP (1998) Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res 72:141–196

    Article  CAS  PubMed  Google Scholar 

  • Becker PB, Horz W (2002) ATP-dependent nucleosome remodeling. Annu Rev Biochem 71:247–273

    Article  CAS  PubMed  Google Scholar 

  • Bernstein E, Duncan EM, Masui O, Gil J, Heard E, Allis CD (2006) Mouse polycomb Proteins bind differentially to methylated histone H3 and RNA and are enriched in facultative heterochromatin. Mol Cell Biol 26(7):2560–2569

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Betz BL, Strobeck MW, Reisman DN, Knudsen ES, Weissman BE (2002) Re-expression of hSNF5/INI1/BAF47 in pediatric tumor cells leads to G1 arrest associated with induction of p16ink4a and activation of RB. Oncogene 21(34):5193–5203

    Article  CAS  PubMed  Google Scholar 

  • Biegel JA, Zhou JY, Rorke LB, Stenstrom C, Wainwright LM, Fogelgren B (1999) Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Res 59(1):74–79

    CAS  PubMed  Google Scholar 

  • Bochar DA, Wang L, Beniya H, Kinev A, Xue Y, Lane WS, Wang W, Kashanchi F, Shiekhattar R (2000) BRCA1 is associated with a human SWI/SNF-related complex: linking chromatin remodeling to breast cancer. Cell 102(2):257–265

    Article  CAS  PubMed  Google Scholar 

  • Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI, Levine SS, Wernig M, Tajonar A, Ray MK, Bell GW, Otte AP, Vidal M, Gifford DK, Young RA, Jaenisch R (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441(7091):349–353

    Article  CAS  PubMed  Google Scholar 

  • Bracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K (2003) EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J 22(20):5323–5335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bracken AP, Dietrich N, Pasini D, Hansen KH, Helin K (2006) Genome-wide mapping of polycomb target genes unravels their roles in cell fate transitions. Genes Dev 20(9):1123–1136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bracken AP, Kleine-Kohlbrecher D, Dietrich N, Pasini D, Gargiulo G, Beekman C, Theilgaard-Monch K, Minucci S, Porse BT, Marine J-C, Hansen KH, Helin K (2007) The polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev 21(5):525–530

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bultman S, Gebuhr T, Yee D, La Mantia C, Nicholson J, Gilliam A, Randazzo F, Metzger D, Chambon P, Crabtree G, Magnuson T (2000) A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol Cell 6(6):1287–1295

    Article  CAS  PubMed  Google Scholar 

  • Canaani E, Nakamura T, Rozovskaia T, Smith ST, Mori T, Croce CM, Mazo A (2004) ALL-1/MLL1, a homologue of Drosophila TRITHORAX, modifies chromatin and is directly involved in infant acute leukaemia. Br J Cancer 90(4):756–760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng SW, Davies KP, Yung E, Beltran RJ, Yu J, Kalpana GV (1999) c-MYC interacts with INI1/hSNF5 and requires the SWI/SNF complex for transactivation function. Nat Genet 22(1):102–105

    Article  CAS  PubMed  Google Scholar 

  • Cho YM, Choi J, Lee OJ, Lee HI, Han DJ, Ro JY (2006) SMARCB1/INI1 missense mutation in mucinous carcinoma with rhabdoid features. Pathol Int 56(11):702–706

    Article  CAS  PubMed  Google Scholar 

  • Cleard F, Moshkin Y, Karch F, Maeda RK (2006) Probing long-distance regulatory interactions in the Drosophila melanogaster bithorax complex using dam identification. Nat Genet 38(8):931–935

    Article  CAS  PubMed  Google Scholar 

  • Comet I, Savitskaya E, Schuettengruber B, Negre N, Lavrov S, Parshikov A, Juge F, Gracheva E, Georgiev P, Cavalli G (2006) PRE-mediated bypass of two Su(Hw) insulators targets PcG proteins to a downstream promoter. Dev Cell 11(1):117–124

    Article  CAS  PubMed  Google Scholar 

  • Core N, Joly F, Boned A, Djabali M (2004) Disruption of E2F signaling suppresses the INK4a-induced proliferative defect in M33-deficient mice. Oncogene 23(46):7660–7668

    Article  CAS  PubMed  Google Scholar 

  • Decristofaro MF, Betz BL, Rorie CJ, Reisman DN, Wang W, Weissman BE (2001) Characterization of SWI/SNF protein expression in human breast cancer cell lines and other malignancies. J Cell Physiol 186(1):136–145

    Article  CAS  PubMed  Google Scholar 

  • Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295(5558):1306–1311

    Article  CAS  PubMed  Google Scholar 

  • Dennis K, Fan T, Geiman T, Yan Q, Muegge K (2001) Lsh, a member of the SNF2 family, is required for genome-wide methylation. Genes Dev 15(22):2940–2944

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Doan DN, Veal TM, Yan Z, Wang W, Jones SN, Imbalzano AN (2004) Loss of the INI1 tumor suppressor does not impair the expression of multiple BRG1-dependent genes or the assembly of SWI/SNF enzymes. Oncogene 23(19):3462–3473

    Article  CAS  PubMed  Google Scholar 

  • Douglass EC, Rowe ST, Valentine M, Parham D, Meyer WH, Thompson EI (1990) A second nonrandom translocation, der(16)t(1;16)(q21;q13), in Ewing sarcoma and peripheral neuroectodermal tumor. Cytogenet Cell Genet 53(2–3):87–90

    Article  CAS  PubMed  Google Scholar 

  • Fyodorov DV, Kadonaga JT (2002) Dynamics of ATP-dependent chromatin assembly by ACF. Nature 418(6900):897–900

    Article  CAS  PubMed  Google Scholar 

  • Gibbons RJ, McDowell TL, Raman S, O’Rourke DM, Garrick D, Ayyub H, Higgs DR (2000) Mutations in ATRX, encoding a SWI/SNF-like protein, cause diverse changes in the pattern of DNA methylation. Nat Genet 24(4):368–371

    Article  CAS  PubMed  Google Scholar 

  • Gil J, Peters G (2006) Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all. Nat Rev Mol Cell Biol 7(9):667–677

    Article  CAS  PubMed  Google Scholar 

  • Gil J, Bernard D, Martinez D, Beach D (2004) Polycomb CBX7 has a unifying role in cellular lifespan. Nat Cell Biol 6(1):67–72

    Article  CAS  PubMed  Google Scholar 

  • Guidi CJ, Sands AT, Zambrowicz BP, Turner TK, Demers DA, Webster W, Smith TW, Imbalzano AN, Jones SN (2001) Disruption of Ini1 leads to peri-implantation lethality and tumorigenesis in mice. Mol Cell Biol 21(10):3598–3603

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haas JE, Palmer NF, Weinberg AG, Beckwith JB (1981) Ultrastructure of malignant rhabdoid tumor of the kidney. A distinctive renal tumor of children. Hum Pathol 12(7):646–657

    Article  CAS  PubMed  Google Scholar 

  • He J, Kallin EM, Tsukada Y-i, Zhang Y (2008) The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15Ink4b. Nat Struct Mol Biol 15(11):1169–1175

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hernando E, Nahle Z, Juan G, Diaz-Rodriguez E, Alaminos M, Hemann M, Michel L, Mittal V, Gerald W, Benezra R, Lowe SW, Cordon-Cardo C (2004) Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic control. Nature 430(7001):797–802

    Article  CAS  PubMed  Google Scholar 

  • Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M (1999) The oncogene and polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397(6715):164–168

    Article  CAS  PubMed  Google Scholar 

  • Johnson CN, Adkins NL, Georgel P (2005) Chromatin remodeling complexes: ATP-dependent machines in action. Biochem Cell Biol 83(4):405–417

    Article  CAS  PubMed  Google Scholar 

  • Jones PA, Baylin SB (2007) The Epigenomics of Cancer. Cell 128(4):683–692

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Judkins AR, Mauger J, Ht A, Rorke LB, Biegel JA (2004) Immunohistochemical analysis of hSNF5/INI1 in pediatric CNS neoplasms. Am J Surg Pathol 28(5):644–650

    Article  PubMed  Google Scholar 

  • Kadauke S, Blobel GA (2009) Chromatin loops in gene regulation. Biochim Biophys Acta 1789(1):17–25

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kamijo T, Zindy F, Roussel MF, Quelle DE, Downing JR, Ashmun RA, Grosveld G, Sherr CJ (1997) Tumor suppression at the mouse ink4a locus mediated by the alternative reading frame product p19 ARF. Cell 91(5):649–659

    Article  CAS  PubMed  Google Scholar 

  • Kheradmand Kia S, Solaimani Kartalaei P, Farahbakhshian E, Pourfarzad F, von Lindern M, Verrijzer CP (2009) EZH2-dependent chromatin looping controls INK4a and INK4b, but not ARF, during human progenitor cell differentiation and cellular senescence. Epigenetics Chromatin 2(1):16

    Article  PubMed Central  PubMed  Google Scholar 

  • Kia SK, Gorski MM, Giannakopoulos S, Verrijzer CP (2008) SWI/SNF mediates polycomb eviction and epigenetic reprogramming of the INK4b-ARF-INK4a locus. Mol Cell Biol 28(10):3457–3464

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim WY, Sharpless NE (2006) The Regulation of INK4/ARF in Cancer and aging. Cell 127(2):265–275

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Rowe J, Fujii H, Jones R, Schmierer B, Kong BW, Kuchler K, Foster D, Ish-Horowicz D, Peters G (2006) Upregulation of chicken p15INK4b at senescence and in the developing brain. J Cell Sci 119(12):2435–2443

    Article  CAS  PubMed  Google Scholar 

  • Klochendler-Yeivin A, Fiette L, Barra J, Muchardt C, Babinet C, Yaniv M (2000) The murine SNF5/INI1 chromatin remodeling factor is essential for embryonic development and tumor suppression. EMBO Rep 1(6):500–506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kotake Y, Cao R, Viatour P, Sage J, Zhang Y, Xiong Y (2007) pRB family proteins are required for H3K27 trimethylation and polycomb repression complexes binding to and silencing p16INK4a tumor suppressor gene. Genes Dev 21(1):49–54

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krimpenfort P, Ijpenberg A, Song J-Y, van der Valk M, Nawijn M, Zevenhoven J, Berns A (2007) p15Ink4b is a critical tumour suppressor in the absence of p16Ink4a. Nature 448(7156):943–946

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurthy J, Torrice C, Ramsey MR, Kovalev GI, Al-Regaiey K, Su L, Sharpless NE (2004) Ink4a/Arf expression is a biomarker of aging. J Clin Invest 114(9):1299–1307

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kuser-Abali G, Alptekin A, Cinar B (2014) Overexpression of MYC and EZH2 cooperates to epigenetically silence MST1 expression. Epigenetics 9(4):634–643

    Article  CAS  PubMed  Google Scholar 

  • Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D (2002) Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev 16(22):2893–2905

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lanzuolo C, Roure V, Dekker J, Bantignies F, Orlando V (2007) Polycomb response elements mediate the formation of chromosome higher-order structures in the bithorax complex. Nat Cell Biol 9(10):1167–1174

    Article  CAS  PubMed  Google Scholar 

  • Latres E, Malumbres M, Sotillo R, Martin J, Ortega S, Martin-Caballero J, Flores JM, Cordon-Cardo C, Barbacid M (2000) Limited overlapping roles of P15(INK4b) and P18(INK4c) cell cycle inhibitors in proliferation and tumorigenesis. EMBO J 19(13):3496–3506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM, Chevalier B, Johnstone SE, Cole MF, Isono K-i, Koseki H, Fuchikami T, Abe K, Murray HL, Zucker JP, Yuan B, Bell GW, Herbolsheimer E, Hannett NM, Sun K, Odom DT, Otte AP, Volkert TL, Bartel DP, Melton DA, Gifford DK, Jaenisch R, Young RA (2006) Control of developmental regulators by polycomb in human embryonic stem cells. Cell 125(2):301–313

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lia G, Praly E, Ferreira H, Stockdale C, Tse-Dinh YC, Dunlap D, Croquette V, Bensimon D, Owen-Hughes T (2006) Direct observation of DNA distortion by the RSC complex. Mol Cell 21(3):417–425

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lowe SW, Sherr CJ (2003) Tumor suppression by Ink4a-Arf: progress and puzzles. Curr Opin Genet Dev 13(1):77–83

    Article  CAS  PubMed  Google Scholar 

  • Lund AH, van Lohuizen M (2004) Epigenetics and cancer. Genes Dev 1(18):2315–2335

    Article  Google Scholar 

  • Martin N, Popov N, Aguilo F, O’Loghlen A, Raguz S, Snijders AP, Dharmalingam G, Li S, Thymiakou E, Carroll T, Zeisig BB, So CW, Peters G, Episkopou V, Walsh MJ, Gil J (2013) Interplay between homeobox proteins and polycomb repressive complexes in p16INK(4)a regulation. EMBO J 32(7):982–995

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Merlo A, Herman JG, Mao L, Lee DJ, Gabrielson E, Burger PC, Baylin SB, Sidransky D (1995) 5’ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med 1(7):686–692

    Article  CAS  PubMed  Google Scholar 

  • Mohrmann L, Verrijzer CP (2005) Composition and functional specificity of SWI2/SNF2 class chromatin remodeling complexes. Biochim Biophys Acta 1681(2–3):59–73

    Article  CAS  PubMed  Google Scholar 

  • Moshkin YM, Mohrmann L, van Ijcken WFJ, Verrijzer CP (2007) Functional Differentiation of SWI/SNF Remodelers in Transcription and Cell Cycle Control. Mol Cell Biol 27(2):651–661

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ohtani N, Zebedee Z, Huot TJ, Stinson JA, Sugimoto M, Ohashi Y, Sharrocks AD, Peters G, Hara E (2001) Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence. Nature 409(6823):1067–1070

    Article  CAS  PubMed  Google Scholar 

  • Ortega S, Malumbres M, Barbacid M (2002) Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochim Biophys Acta 1602(1):73–87

    CAS  PubMed  Google Scholar 

  • Oruetxebarria I, Venturini F, Kekarainen T, Houweling A, Zuijderduijn LM, Mohd-Sarip A, Vries RG, Hoeben RC, Verrijzer CP (2004) P16INK4a is required for hSNF5 chromatin remodeler-induced cellular senescence in malignant rhabdoid tumor cells. J Biol Chem 279(5):3807–3816

    Article  CAS  PubMed  Google Scholar 

  • Parry D, Mahony D, Wills K, Lees E (1999) Cyclin D-CDK Subunit arrangement is dependent on the availability of competing INK4 and p21 class inhibitors. Mol Cell Biol 19(3):1775–1783

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pasini D, Bracken AP, Hansen JB, Capillo M, Helin K (2007) The polycomb group protein Suz12 Is required for embryonic stem cell differentiation. Mol Cell Biol 27(10):3769–3779

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pomerantz J, Schreiber-Agus N, Liégeois NJ, Silverman A, Alland L, Chin L, Potes J, Chen K, Orlow I, Lee H-W, Cordon-Cardo C, DePinho RA (1998) The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell 92(6):713–723

    Article  CAS  PubMed  Google Scholar 

  • Reisman DN, Sciarrotta J, Wang W, Funkhouser WK, Weissman BE (2003) Loss of BRG1/BRM in human lung cancer cell lines and primary lung cancers: correlation with poor prognosis. Cancer Res 63(3):560–566

    CAS  PubMed  Google Scholar 

  • Rhee I, Bachman KE, Park BH, Jair KW, Yen RW, Schuebel KE, Cui H, Feinberg AP, Lengauer C, Kinzler KW, Baylin SB, Vogelstein B (2002) DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 416(6880):552–556

    Article  CAS  PubMed  Google Scholar 

  • Roberts CW, Orkin SH (2004) The SWI/SNF complex-chromatin and cancer. Nat Rev Cancer 4(2):133–142

    Article  CAS  PubMed  Google Scholar 

  • Roberts CW, Galusha SA, McMenamin ME, Fletcher CD, Orkin SH (2000) Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice. Proc Natl Acad Sci U S A 97(25):13796–13800

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roberts CW, Leroux MM, Fleming MD, Orkin SH (2002) Highly penetrant, rapid tumorigenesis through conditional inversion of the tumor suppressor gene Snf5. Cancer Cell 2(5):415–425

    Article  CAS  PubMed  Google Scholar 

  • Rorke LB, Packer R, Biegel J (1995) Central nervous system atypical teratoid/rhabdoid tumors of infancy and childhood. J Neurooncol 24(1):21–28

    Article  CAS  PubMed  Google Scholar 

  • Saha A, Wittmeyer J, Cairns BR (2005) Chromatin remodeling through directional DNA translocation from an internal nucleosomal site. Nat Struct Mol Biol 12(9):747–755

    Article  CAS  PubMed  Google Scholar 

  • Sansam CG, Roberts CW (2006) Epigenetics and cancer: altered chromatin remodeling via snf5 loss leads to aberrant cell cycle regulation. Cell Cycle 5(6):621–624

    Article  CAS  PubMed  Google Scholar 

  • Schwartz YB, Pirrotta V (2007) Polycomb silencing mechanisms and the management of genomic programmes. Nat Rev Genet 8(1):9–22

    Article  CAS  PubMed  Google Scholar 

  • Schwartz YB, Kahn TG, Nix DA, Li XY, Bourgon R, Biggin M, Pirrotta V (2006) Genome-wide analysis of polycomb targets in Drosophila melanogaster. Nat Genet 38(6):700–705

    Article  CAS  PubMed  Google Scholar 

  • Sevenet N, Lellouch-Tubiana A, Schofield D, Hoang-Xuan K, Gessler M, Birnbaum D, Jeanpierre C, Jouvet A, Delattre O (1999a) Spectrum of hSNF5/INI1 somatic mutations in human cancer and genotype-phenotype correlations. Hum Mol Genet 8(13):2359–2368

    Google Scholar 

  • Sevenet N, Sheridan E, Amram D, Schneider P, Handgretinger R, Delattre O (1999b) Constitutional mutations of the hSNF5/INI1 gene predispose to a variety of cancers. Am J Hum Genet 65(5):1342–1348

    Google Scholar 

  • Shao Z, Raible F, Mollaaghababa R, Guyon JR, Wu CT, Bender W, Kingston RE (1999) Stabilization of chromatin structure by PRC1, a polycomb complex. Cell 98(1):37–46

    Article  CAS  PubMed  Google Scholar 

  • Sharpless NE (2005) INK4a/ARF: A multifunctional tumor suppressor locus. Mutat Res 576(1–2):22–38

    Article  CAS  PubMed  Google Scholar 

  • Sharpless NE, Ramsey MR, Balasubramanian P, Castrillon DH, DePinho RA (2004) The differential impact of p16INK4a or p19ARF deficiency on cell growth and tumorigenesis. Oncogene 23(2):379–385

    Article  CAS  PubMed  Google Scholar 

  • Simao Tde A, Simoes GL, Ribeiro FS, Cidade DA, Andreollo NA, Lopes LR, Macedo JM, Acatauassu R, Teixeira AM, Felzenszwalb I, Pinto LF, Albano RM (2006) Lower expression of p14ARF and p16INK4a correlates with higher DNMT3B expression in human oesophageal squamous cell carcinomas. Hum Exp Toxicol 25(9):515–522

    Article  PubMed  Google Scholar 

  • Simon JA, Lange CA (2008) Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat Res 647(1–2):21–29

    Article  CAS  PubMed  Google Scholar 

  • Sotillo R, Hernando E, Diaz-Rodriguez E, Teruya-Feldstein J, Cordon-Cardo C, Lowe SW, Benezra R (2007) Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell 11(1):9–23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sparmann A, van Lohuizen M (2006) Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 6(11):846–856

    Article  CAS  PubMed  Google Scholar 

  • Su IH, Basavaraj A, Krutchinsky AN, Hobert O, Ullrich A, Chait BT, Tarakhovsky A (2003) Ezh2 controls B cell development through histone H3 methylation and Igh rearrangement. Nat Immunol 4(2):124–131

    Article  CAS  PubMed  Google Scholar 

  • Sullivan LM, Folpe AL, Pawel BR, Judkins AR, Biegel JA (2013) Epithelioid sarcoma is associated with a high percentage of SMARCB1 deletions. Mod Pathol 26(3):385–392

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takayama MA, Taira T, Tamai K, Iguchi-Ariga SM, Ariga H (2000) ORC1 interacts with c-Myc to inhibit E-box-dependent transcription by abrogating c-Myc-SNF5/INI1 interaction. Genes Cells 5(6):481–490

    Article  CAS  PubMed  Google Scholar 

  • Takita J, Chen Y, Kato M, Ohki K, Sato Y, Ohta S, Sugita K, Nishimura R, Hoshino N, Seki M, Sanada M, Oka A, Hayashi Y, Ogaw S (2014) Genome-wide approach to identify second gene targets for malignant rhabdoid tumors using high-density oligonucleotide microarrays. Cancer Sci 105(3):258–264

    Article  CAS  PubMed  Google Scholar 

  • Tiwari VK, Cope L, McGarvey KM, Ohm JE, Baylin SB (2008a) A novel 6 C assay uncovers polycomb-mediated higher order chromatin conformations. Genome Res 18(7):1171–1179

    Google Scholar 

  • Tiwari VK, McGarvey KM, Licchesi JD, Ohm JE, Herman JG, Schubeler D, Baylin SB (2008b) PcG proteins, DNA methylation, and gene repression by chromatin looping. PLoS Biol 6(12):2911–2927

    Google Scholar 

  • Valk-Lingbeek ME, Bruggeman SWM, van Lohuizen M (2004) Stem cells and cancer: the polycomb connection. Cell 118(4):409–418

    Article  CAS  PubMed  Google Scholar 

  • van Deursen JM (2007) Rb loss causes cancer by driving mitosis mad. Cancer Cell 11(1):1–3

    Article  PubMed  Google Scholar 

  • Versteege I, Sevenet N, Lange J, Rousseau-Merck MF, Ambros P, Handgretinger R, Aurias A, Delattre O (1998) Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature 394(6689):203–206

    Article  CAS  PubMed  Google Scholar 

  • Versteege I, Medjkane S, Rouillard D, Delattre O (2002) A key role of the hSNF5/INI1 tumour suppressor in the control of the G1-S transition of the cell cycle. Oncogene 21(42):6403–6412

    Article  CAS  PubMed  Google Scholar 

  • Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, Morey L, Van Eynde A, Bernard D, Vanderwinden J-M, Bollen M, Esteller M, Di Croce L, de Launoit Y, Fuks F (2006) The polycomb group protein EZH2 directly controls DNA methylation. Nature 439(7078):871–874

    Article  CAS  PubMed  Google Scholar 

  • Vries RG, Bezrookove V, Zuijderduijn LM, Kia SK, Houweling A, Oruetxebarria I, Raap AK, Verrijzer CP (2005) Cancer-associated mutations in chromatin remodeler hSNF5 promote chromosomal instability by compromising the mitotic checkpoint. Genes Dev 19(6):665–670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Whitehouse I, Stockdale C, Flaus A, Szczelkun MD, Owen-Hughes T (2003) Evidence for DNA translocation by the ISWI chromatin-remodeling enzyme. Mol Cell Biol 23(6):1935–1945

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wong AK, Shanahan F, Chen Y, Lian L, Ha P, Hendricks K, Ghaffari S, Iliev D, Penn B, Woodland AM, Smith R, Salada G, Carillo A, Laity K, Gupte J, Swedlund B, Tavtigian SV, Teng DH, Lees E (2000) BRG1, a component of the SWI-SNF complex, is mutated in multiple human tumor cell lines. Cancer Res 60(21):6171–6177

    CAS  PubMed  Google Scholar 

  • Zhang HS, Gavin M, Dahiya A, Postigo AA, Ma D, Luo RX, Harbour JW, Dean DC (2000) Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF. Cell 101(1):79–89

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZK, Davies KP, Allen J, Zhu L, Pestell RG, Zagzag D, Kalpana GV (2002) Cell cycle arrest and repression of cyclin D1 transcription by INI1/hSNF5. Mol Cell Biol 22(16):5975–5988

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Y, Smith CL, Saha A, Grill SW, Mihardja S, Smith SB, Cairns BR, Peterson CL, Bustamante C (2006) DNA translocation and loop formation mechanism of chromatin remodeling by SWI/SNF and RSC. Mol Cell 24(4):559–568

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sima Kheradmand Kia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kheradmand Kia, S. (2015). Malignant Rhabdoid Tumor: Epigenetic Mechanism of Tumorogenesis. In: Mehdipour, P. (eds) Epigenetics Territory and Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9639-2_14

Download citation

Publish with us

Policies and ethics