Skip to main content

Epigenetics and Three Main Clinical Aspects of Breast Cancer Management

  • Chapter
  • First Online:
Epigenetics Territory and Cancer

Abstract

Breast cancer as a malignant disease is a common cancer in women worldwide. As any other malignancies there are three main aspects in the management of breast cancer: diagnosis (early detection is crucial), tumor classification/prognosis and treatment. This chapter focuses on the practical roles of epigenetic alterations (mainly DNA methylation) in these three clinical problems of breast cancer. DNA methylation signatures especially in cell free DNA in plasma or serum which originated from tumor cells, are promising tools for diagnosis and early detection of breast cancer. Also DNA methylation patterns in lymphocytes are a recent approach for breast cancer diagnosis. Epigenetic signatures in tumor tissues can classify tumors precisely and may provide new classification beyond conventional histopathological classifications. As epigenetic alterations such as DNA methylation and histone deacetylation are reversible, they are appropriate targets for epidrugs (DNMT inhibitors and HDACis) in breast cancer treatment. Finally micro RNAs as another epigenetic player in carcinogenesis will have a prominent role in the different clinical aspects of breast cancer diagnosis and prognostication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APC:

Adenomatous Polyposis Coli

5-aza:

5-azacytidine

BRCA1 gene:

Breast cancer gene 1, early onset

B-CIMP:

Breast cancer CpG island methylator phenotype

cf DNA:

Cell free DNA

DCIS:

Ductal carcinoma in situ

DFS:

Disease free survival

DNMTs:

DNA methyl transferases

ECM:

Extracellular matrix

ERα:

Estrogen receptor α

EGCG:

Epigallocatechin-3-gallate

GE:

Genistein

HDAC:

Histone deacetylases

HDACi:

Histone deacetylase inhibitors

HER2:

Human epidermal growth factor receptor 2

HME-1:

Human mammary epithelial-specific marker

IDC:

Invasive ductal carcinoma

LABC:

Locally advanced breast cancer

MGMT:

O6-methylguanine-DNA methyltransferase

PRβ:

Progesterone receptor β

PB:

Peripheral blood

RAR-β:

Retinoic acid receptor-β

RASSF1A:

Ras-association domain family 1

TSA:

Trichostatin A

WBC:

White blood cells

References

  • Akao Y, Nakagawa Y, Naoe T (2006) Let-7 MicroRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull 29:903–906

    CAS  PubMed  Google Scholar 

  • Amin K, Banerjee P (2012) The cellular functions of RASSF1 A and its inactivation in prostate cancer. J Carcinog 11:3

    PubMed Central  PubMed  Google Scholar 

  • Andrews J, Kennette W, Pilon J, Hodgson A, Tuck AB, Chambers AF et al (2010) Multi-platform whole-genome microarray analyses refine the epigenetic signature of breast cancer metastasis with gene expression and copy number. PLoS One 5:e8665

    PubMed Central  PubMed  Google Scholar 

  • Anker P, Mulcahy H, Chen XQ, Stroun M (1999) Detection of circulating tumour DNA in the blood (plasma/serum) of cancer patients. Cancer Metastasis Rev 18:65–73

    CAS  PubMed  Google Scholar 

  • Arce C, Pérez-Plasencia C, González-Fierro A, de la Cruz-Hernández E, Revilla-Vázquez A, Chávez-Blanco A et al (2006) A proof-of-principle study of epigenetic therapy added to neoadjuvant doxorubicin cyclophosphamide for locally advanced breast cancer. PLoS One 1:e98

    PubMed Central  PubMed  Google Scholar 

  • Asaga S, Kuo C, Nguyen T, Terpenning M, Giuliano AE, Hoon DSB (2011) Direct serum assay for microRNA-21 concentrations in early and advanced breast cancer. Clin Chem 57:84–91

    CAS  PubMed  Google Scholar 

  • Bali P, Pranpat M, Swaby R, Fiskus W, Yamaguchi H, Balasis M et al (2005) Activity of suberoylanilide hydroxamic Acid against human breast cancer cells with amplification of her-2. Clin Cancer Res 11:6382–6389

    CAS  PubMed  Google Scholar 

  • Bartholow TL, Becich MJ, Chandran UR, Parwani AV (2011) Immunohistochemical staining of slit2 in primary and metastatic prostatic adenocarcinoma. Transl Oncol 4:314–320

    PubMed Central  PubMed  Google Scholar 

  • Biçaku E, Marchion DC, Schmitt ML, Münster PN (2008) Selective inhibition of histone deacetylase 2 silences progesterone receptor-mediated signaling. Cancer Res 68:1513–1519

    PubMed  Google Scholar 

  • Bojesen SE, Pooley KA, Johnatty SE, Beesley J, Michailidou K, Tyer JP et al (2013) Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nat Genet 45:371–384

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bosviel R, Garcia S, Lavediaux G, Michard E, Dravers M, Kwiatkowski F et al (2012) BRCA1 promoter methylation in peripheral blood DNA was identified in sporadic breast cancer and controls. Cancer Epidemiol 36:e177–e182

    CAS  PubMed  Google Scholar 

  • Brennan K, Garcia-Closas M, Orr N, Fletcher O, Jones M, Ashworth A et al (2012) Intragenic ATM methylation in peripheral blood DNA as a biomarker of breast cancer risk. Cancer Res 72:2304–2313

    CAS  PubMed  Google Scholar 

  • Brose K, Bland KS, Wang KH, Arnott D, Henzel W, Goodman CS et al (1999) Slit proteins bind robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell 96:795–806

    CAS  PubMed  Google Scholar 

  • Candelaria M, Gallardo-Rincón D, Arce C, Cetina L, Aguilar-Ponce JL, Arrieta O et al (2007) A phase II study of epigenetic therapy with hydralazine and magnesium valproate to overcome chemotherapy resistance in refractory solid tumors. Ann Oncol 18:1529–1538

    CAS  PubMed  Google Scholar 

  • Carone BR, Fauquier L, Habib N, Shea JM, Hart CE, Li R et al (2010) Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143:1084–1096

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng JC, Yoo CB, Weisenberger DJ, Chuang J, Wozniak C, Liang G et al (2004) Preferential response of cancer cells to zebularine. Cancer Cell 6: 151–158

    CAS  PubMed  Google Scholar 

  • Cho YH, Yazici H, Wu HC, Terry MB, Gonzalez K, Qu M et al (2010) Aberrant promoter hypermethylation and genomic hypomethylation in tumor, adjacent normal tissues and blood from breast cancer patients. Anticancer Res 30:2489–2496

    PubMed Central  CAS  PubMed  Google Scholar 

  • Choi JY, James SR, Link PA, McCann SE, Hong CC, Davis W et al (2009) Association between global DNA hypomethylation in leukocytes and risk of breast cancer. Carcinogenesis 30:1889–1897

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dallol A, Da Silva NF, Viacava P, Minna JD, Bieche I, Maher ER et al (2002) SLIT2, a human homologue of the Drosophila Slit2 gene, has tumor suppressor activity and is frequently inactivated in lung and breast cancers. Cancer Res 62:5874–5880

    CAS  PubMed  Google Scholar 

  • Dedeurwaerder S, Desmedt C, Calonne E, Singhal SK, Haibe-Kains B, Defrance M et al (2011a) DNA methylation profiling reveals a predominant immune component in breast cancers. EMBO Mol Med 3:726–741

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dedeurwaerder S, Fumagalli D, Fuks F (2011b) Unravelling the epigenomic dimension of breast cancers. Curr Opin Oncol 23:559–565

    PubMed  Google Scholar 

  • Dickinson RE, Dallol A, Bieche I, Krex D, Morton D, Maher ER et al (2004) Epigenetic inactivation of SLIT3 and SLIT1 genes in human cancers. Br J Cancer 91:2071–2078

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dickinson RE, Fegan KS, Ren X, Hillier SG, Duncan WC (2011) Glucocorticoid regulation of SLIT/ROBO tumour suppressor genes in the ovarian surface epithelium and ovarian cancer cells. Plos One 6:e27792

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dim DC, Jiang F, Qiu Q, Li T, Darwin P, Rodgers WH et al (2011) The usefulness of S100P, mesothelin, fascin, prostate stem cell antigen, and 14-3-3 sigma in diagnosing pancreatic adenocarcinoma in cytological specimens obtained by endoscopic ultrasound guided fine-needle aspiration. Diagn Cytopathol 42:193–199

    PubMed  Google Scholar 

  • Dobrovic A, Kristensen LS (2009) DNA methylation, epimutations and cancer predisposition. Int J Biochem Cell Biol 41:34–39

    CAS  PubMed  Google Scholar 

  • Dulaimi E, Hillinck J, Ibanez de Caceres I, Al-Saleem T, Cairns P (2004) Tumor suppressor gene promoter hypermethylation in serum of breast cancer patients. Clin Cancer Res 10:6189–6193

    CAS  PubMed  Google Scholar 

  • Dworkin AM, Huang THM, Toland AE (2009) Epigenetic alterations in the breast: Implications for breast cancer detection, prognosis and treatment. Semin Cancer Biol 19:165–171

    PubMed Central  CAS  PubMed  Google Scholar 

  • Esteller M, Sparks A, Toyota M, Sanchez-Cespedes M, Capella G, Peinado MA et al (2000) Analysis of adenomatous polyposis coli promoter hypermethylation in human cancer. Cancer Res 60:4366–4371

    CAS  PubMed  Google Scholar 

  • Fabian CJ, Kimler BF, Mayo MS, Khan SA (2005) Breast tissue sampling for risk assessment and prevention. Endocr Relat Cancer 12:185–213

    CAS  PubMed  Google Scholar 

  • Fan J, Yin WJ, Lu JS, Wang L, Wu J, Wu FY et al (2008) ER alpha negative breast cancer cells restore response to endocrine therapy by combination treatment with both HDAC inhibitor and DNMT inhibitor. J Cancer Res Clin Oncol 134:883–890

    CAS  PubMed  Google Scholar 

  • Fang F, Turcan S, Rimner A, Kaufman A, Giri D, Morris LGT et al (2011) Breast cancer methylomes establish an epigenomicfoundation for metastasis. Sci Transl Med 3:75ra25

    PubMed Central  PubMed  Google Scholar 

  • Fiskus W, Ren Y, Mohapatra A, Bali P, Mandawat A, Rao R et al (2007) Hydroxamic acid analogue histone deacetylase inhibitors attenuate estrogen receptor-alpha levels and transcriptional activity: a result of hyperacetylation and inhibition of chaperone function of heat shock protein 90. Clin Cancer Res 13:4882–4890

    CAS  PubMed  Google Scholar 

  • Flanagan JM, Munoz-Alegre M, Henderson S, Tang T, Sun P, Johnson N et al (2009) Gene-body hypermethylation of ATM in peripheral blood DNA of bilateral breast cancer patients. Hum Mol Genet 18:1332–1342

    PubMed Central  CAS  PubMed  Google Scholar 

  • Graff JR, Herman JG, Lapidus RG, Chopra H, Xu R, Jarrard DF et al (1995) E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res 55:5195–5199

    CAS  PubMed  Google Scholar 

  • Ha YS, Jeong P, Kim JS, Kwon WA, Kim IY, Yun SJ et al (2012) Tumorigenic and prognostic significance of RASSF1 A expression in low-grade (WHO grade 1 and grade 2) nonmuscle-invasive bladder cancer. Urology 79:1411.e1–1411.e6

    PubMed  Google Scholar 

  • Hanash SM, Baik CS, Kallioniemi O (2011) Emerging molecular biomarkers-blood-based strategies to detect and monitor cancer. Nat Rev Clin Oncol 8:142–150

    PubMed  Google Scholar 

  • Hansmann T, Pliushch G, Leubner M, Kroll P, Endt D, Gehrig A et al (2012) Constitutive promoter methylation of BRCA1 and RAD51 C in patients with familial ovarian cancer and early-onset sporadic breast cancer. Hum Mol Genet 21:4669–4679

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hatziapostolou M, Iliopoulos D (2011) Epigenetic aberrations during oncogenesis. Cell Mol Life Sci 68:1681–1702

    CAS  PubMed  Google Scholar 

  • Hayes DF, Isaacs C, Stearns V (2001) Prognostic factors in breast cancer: current and new predictors of metastasis. J Mammary Gland Biol Neoplasia 6:375–392

    CAS  PubMed  Google Scholar 

  • He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531

    CAS  PubMed  Google Scholar 

  • Hedenfalk I, Duggan D, Chen Y, Radmacher M, Bittner M, Simon R et al (2001) Gene-expression profiles in hereditary breast cancer. N Engl J Med 344:539–548

    CAS  PubMed  Google Scholar 

  • Heyn H, Carmona FJ, Gomez A, Ferreira HJ, Bell JT, Sayols S et al (2013) DNA methylation profiling in breast cancer discordant identical twins identifies DOK7 as novel epigenetic biomarker. Carcinogenesis 34:102–108

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hill VK, Ricketts C, Bieche I, Vacher S, Gentle D, Lewis C et al (2011) Genome-wide DNA methylation profiling of CpG islands in breast cancer identifies novel genes associated with tumorigenicity. Cancer Res 71:2988–2999

    CAS  PubMed  Google Scholar 

  • Hitchins MP, Wong JJL, Suthers G, Suter CM, Martin DIK, Hawkins NJ et al (2007) Inheritance of a cancer-associated MLH1 germ-line epimutation. N Engl J Med 356:697–705

    CAS  PubMed  Google Scholar 

  • Hoque MO, Prencipe M, Poeta ML, Barbano R, Valori VM, Copetti M et al (2009) Changes in CpG islands promoter methylation patterns during ductal breast carcinoma progression. Cancer Epidemiol Biomarkers Prev 18:2694–2700

    CAS  PubMed  Google Scholar 

  • Ignatiadis M, Reinholz M (2011) Minimal residual disease and circulating tumor cells in breast cancer. Breast Cancer Res 13:222

    PubMed Central  CAS  PubMed  Google Scholar 

  • Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070

    CAS  PubMed  Google Scholar 

  • Iorio MV, Casalini P, Piovan C, Braccioli L, Tagliabue E (2011) Breast cancer and microRNAs: therapeutic impact. Breast 20:S63–70

    PubMed  Google Scholar 

  • Isaacs JS, Xu W, Neckers L (2003) Heat shock protein 90 as a molecular target for cancer therapeutics. Cancer Cell 3:213–217

    CAS  PubMed  Google Scholar 

  • Iwamoto T, Yamamoto N, Taguchi T, Tamaki Y, Noguchi S (2011) BRCA1 promoter methylation in peripheral blood cells is associated with increased risk of breast cancer with BRCA1 promoter methylation. Breast Cancer Res Treat 129:69–77

    CAS  PubMed  Google Scholar 

  • Izadi P, Noruzinia M, Fereidooni F, Nateghi MR (2012a) Association of poor prognosis subtypes of breast cancer with estrogen receptor alpha methylation in Iranian women. Asian Pac J Cancer Prev 13:4113–4117

    PubMed  Google Scholar 

  • Izadi P, Noruzinia M, Karimipoor M, Karbassian MH, Akbari MT (2012b) Promoter hypermethylation of estrogen receptor alpha gene is correlated to estrogen receptor negativity in Iranian patients with sporadic breast cancer. Cell J 14:102–109

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jacinto FV, Esteller M (2007) Mutator pathways unleashed by epigenetic silencing in human cancer. Mutagenesis 22:247–253

    CAS  PubMed  Google Scholar 

  • Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    PubMed  Google Scholar 

  • Jin J, You H, Yu B, Deng Y, Tang N, Yao G et al (2009) Epigenetic inactivation of SLIT2 in human hepatocellular carcinomas. Biochem Biophys Res Commun 379:86–91

    CAS  PubMed  Google Scholar 

  • Jing F, Yuping W, Yong C, Jie L, Jun L, Xuanbing T et al (2010) CpG island methylator phenotype of multigene in serum of sporadic breast carcinoma. Tumor Biol 31:321–331

    Google Scholar 

  • Jirtle RL, Skinner MK (2007) Environmental epigenomics and disease susceptibility. Nat Rev Genet 8:253–262

    CAS  PubMed  Google Scholar 

  • Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A et al (2005) RAS is regulated by the let-7 microRNA family. Cell 120:635–647

    CAS  PubMed  Google Scholar 

  • Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428

    CAS  PubMed  Google Scholar 

  • Jones PA, Liang G (2009) Rethinking how DNA methylation patterns are maintained. Nat Rev Genet 10:805–811

    PubMed Central  CAS  PubMed  Google Scholar 

  • Khan SI, Aumsuwan P, Khan IA, Walker LA, Dasmahapatra AK (2012) Epigenetic events associated with breast cancer and their prevention by dietary components targeting the epigenome. Chem Res Toxicol 25:61–73

    CAS  PubMed  Google Scholar 

  • Kim JH, Shin MH, Kweon SS, Park MH, Yoon JH, Lee JS et al (2010) Evaluation of promoter hypermethylation detection in serum as a diagnostic tool for breast carcinoma in Korean women. Gynecol Oncol 118:176–181

    CAS  PubMed  Google Scholar 

  • Kim GE, Lee KH, Choi YD, Lee JS, Lee JH, Nam JH et al (2011) Detection of Slit2 promoter hypermethylation in tissue and serum samples from breast cancer patients. Virchows Arch 459:383–390

    CAS  PubMed  Google Scholar 

  • Kim JS, Chae Y, Ha YS, Kim IY, Byun SS, Yun SJ et al (2012) Ras association domain family 1 A: apromising prognostic marker in recurrent nonmuscle invasive bladder cancer. Clin Genitourin Cancer 10:114–120

    PubMed  Google Scholar 

  • Kohler C, Barekati Z, Radpour R, Zhong XY (2011) Cell-free DNA in the circulation as a potential cancer biomarker. Anticancer Res 31:2623–2628

    CAS  PubMed  Google Scholar 

  • Kristensen VN, Vaske CJ, Ursini-Siegel J, Van Loo P, Nordgard SH, Sachidanandam R et al (2012) Integrated molecular profiles of invasive breast tumors and ductal carcinoma in situ (DCIS) reveal differential vascular and interleukin signaling. Proc Natl Acad Sci U S A 109:2802–2807

    PubMed Central  CAS  PubMed  Google Scholar 

  • Laird PW (2003) The power and the promise of DNA methylation markers. Nat Rev Cancer 3:253–266

    CAS  PubMed  Google Scholar 

  • Lee MN, Tseng RC, Hsu HS, Chen JY, Tzao C, Ho WL et al (2007) Epigenetic inactivation of the chromosomal stability control genes BRCA1, BRCA2, and XRCC5 in non-small cell lung cancer. Clin Cancer Res 13:832–838

    CAS  PubMed  Google Scholar 

  • Li Y, Meeran SM, Patel SN, Chen H, Hardy TM, Tollefsbol TO (2013) Epigenetic reactivation of estrogen receptor-α (ERα) by genistein enhances hormonal therapy sensitivity in ERα-negative breast cancer. Molcancer 12:9

    Google Scholar 

  • Lustberg MB, Ramaswamy B (2011) Epigenetic therapy in breast cancer. Curr Breast Cancer Rep 3:34–43

    PubMed Central  CAS  PubMed  Google Scholar 

  • Luu TH, Morgan RJ, Leong L, Lim D, McNamara M, Portnow J et al (2008) A phase II trial of vorinostat (suberoylanilide hydroxamic acid) in metastatic breast cancer: a California cancer consortium study. Clin Cancer Res 14:7138–7142

    PubMed Central  CAS  PubMed  Google Scholar 

  • Marchion DC, Bicaku E, Daud AI, Richon V, Sullivan DM, Munster PN (2004) Sequence-specific potentiation of topoisomerase II inhibitors by the histone deacetylase inhibitor suberoylanilide hydroxamic acid. J Cell Biochem 92:223–237

    CAS  PubMed  Google Scholar 

  • Marlow R, Strickland P, Lee JS, Wu X, Pebenito M, Binnewies M et al (2008) Slits suppress tumor growth in vivo by silencing Sdf1/Cxcr4 within breast epithelium. Cancer Res 68:7819–7827

    PubMed Central  CAS  PubMed  Google Scholar 

  • Martínez-Galán J, Torres B, del Moral R, Muñoz-Gámez JA, Martín-Oliva D, Villalobos M et al (2008) Quantitative detection of methylated ESR1 and 14-3-3-σ gene promoters in serum as candidate biomarkers for diagnosis of breast cancer and evaluation of treatment efficacy. Cancer Biol Ther 7:958–965

    PubMed  Google Scholar 

  • Matuschek C, Bölke E, Lammering G, Gerber PA, Peiper, M, Budach W et al (2010) Methylated APC and GSTP1 genes in serum DNA correlate with the presence of circulating blood tumor cells and are associated with a more aggressive and advanced breast cancer disease. Eur J Med Res 15:277–286

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mirza S, Sharma G, Prasad CP, Parshad R, Srivastava A, Gupta SD et al (2007) Promoter hypermethylation of TMS1, BRCA1, ERα and PRB in serum and tumor DNA of invasive ductal breast carcinoma patients. Life Sci 81:280–287

    CAS  PubMed  Google Scholar 

  • Mori T, Martinez SR, O’Day SJ, Morton DL, Umetani N, Kitago M et al (2006) Estrogen receptor-alpha methylation predicts melanoma progression. Cancer Res 66:6692–6698

    PubMed Central  CAS  PubMed  Google Scholar 

  • Müller HM, Widschwendter A, Fiegl H, Ivarsson L, Goebel G, Perkmann E et al (2003) DNA methylation in serum of breast cancer patients: an independent prognostic marker. Cancer Res 63:7641–7645

    PubMed  Google Scholar 

  • Munster PN, Troso-Sandoval T, Rosen N, Rifkind R, Marks PA, Richon VM (2001) The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces differentiation of human breast cancer cells. Cancer Rres 61:8492–8497

    CAS  Google Scholar 

  • Munster PN, Thurn KT, Thomas S, Raha P, Lacevic M, Miller A et al (2011) A phase II study of the histone deacetylase inhibitor vorinostat combined with tamoxifen for the treatment of patients with hormone therapy-resistant breast cancer. Br J Cancer 104:1828–1835

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nass SJ, Ferguson AT, El-Ashry D, Nelson WG, Davidson NE (1999) Expression of DNA methyl-transferase (DMT) and the cell cycle in human breast cancer cells. Oncogene 18:7453–7461

    CAS  PubMed  Google Scholar 

  • Ng SF, Lin RCY, Laybutt DR, Barres R, Owens JA, Morris MJ (2010) Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring. Nature 467:963–966

    CAS  PubMed  Google Scholar 

  • Noruzinia M, Coupier I, Pujol P (2005) Is BRCA1/BRCA2-related breast carcinogenesis estrogen dependent? Cancer 104:1567–1574

    CAS  PubMed  Google Scholar 

  • Okumura H, Kita Y, Yokomakura N, Uchikado Y, Setoyama T, Sakurai H et al (2010) Nuclear expression of 14-3-3 sigma is related to prognosis in patients with esophageal squamous cell carcinoma. Anticancer Res 30:5175–5179

    PubMed  Google Scholar 

  • Ota D, Mimori K, Yokobori T, Iwatsuki M, Kataoka A, Masuda N et al (2011) Identification of recurrence-related microRNAs in the bone marrow of breast cancer patients. Int J Oncol 38:955–962

    CAS  PubMed  Google Scholar 

  • Parrella P (2010) Epigenetic signatures in breast cancer: clinical perspective. Breast Care(Basel) 5:66–73

    Google Scholar 

  • Pei H, Ge H, Jiang R, Zhu H (2010) Expression and clinical significance of 14-3-3 sigma and heat shock protein 27 in colorectal cancer. Zhonghua Wei Chang Wai Ke Za Zhi 13:213–215

    PubMed  Google Scholar 

  • Pepe MS, Etzioni R, Feng Z, PotterJD, Thompson ML, Thornquist M et al (2001) Phases of biomarker development for early detection of cancer. J Natl Cancer Inst 93:1054–1061

    CAS  PubMed  Google Scholar 

  • Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    CAS  PubMed  Google Scholar 

  • Piperi C, Themistocleous MS, Papavassiliou GA, Farmaki E, Levidou G, Korkolopoulou P et al (2010) High incidence of MGMT and RARbeta promoter methylation in primary glioblastomas: association with histopathological characteristics, inflammatory mediators and clinical outcome. Mol Med 16:1–9

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pu RT, Laitala LE, Alli PM, Fackler MJ, Sukumar S, Clark DP (2003) Methylation profiling of benign and malignant breast lesions and its application to cytopathology. Mod Pathol 16:1095–1101

    PubMed  Google Scholar 

  • Pujol P, This P, Noruzinia M, Stoppa-Lyonnet D, Maudelonde T (2004) Are the hereditary forms of BRCA1 and BRCA2 breast cancer sensitive to estrogens? Bull Cancer (Paris) 91:583–591

    CAS  Google Scholar 

  • Qian B, Katsaros D, Lu L, Preti M, Durando A, Arisio R et al (2009) High miR-21 expression in breast cancer associated with poor disease-free survival in early stage disease and high TGF-beta1. Breast Cancer Res Treat 117:131–140

    CAS  PubMed  Google Scholar 

  • Qureshi SA, Bashir MU, Yaqinuddin A (2010) Utility of DNA methylation markers for diagnosing cancer. Int J Surg 8:194–198

    PubMed  Google Scholar 

  • Radpour R, Barekati Z, Kohler C, Lv Q, Bürki N, Diesch C et al (2011) Hypermethylation of tumor suppressor genes involved in critical regulatory pathways for developing a blood-based test in breast cancer. Plos One 6:e16080

    PubMed Central  CAS  PubMed  Google Scholar 

  • Robert MF, Morin S, Beaulieu N, Gauthier F, Chute IC, Barsalou A et al (2003) DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nat Genet 33:61–65.

    CAS  PubMed  Google Scholar 

  • Sharma G, Mirza S, Parshad R, Srivastava A, Gupta SD, Pandya P et al (2010) Clinical significance of promoter hypermethylation of DNA repair genes in tumor and serum DNA in invasive ductal breast carcinoma patients. Life Sci 87:83–91

    CAS  PubMed  Google Scholar 

  • Sharma VK, Vouros P, Glick J (2011) Mass spectrometric based analysis, characterization and applications of circulating cell free DNA isolated from human body fluids. Int J Mass Spectrom 304:172–183

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shinozaki M, Hoon DS, Giuliano AE, Hansen NM, Wang HJ, Turner R et al (2005) Distinct hypermethylation profile of primary breast cancer is associated with sentinel lymph node metastasis. Clin Cancer Res 11:2156–2162

    CAS  PubMed  Google Scholar 

  • Shukla S, Mirza S, Sharma G, Parshad R, Gupta SD, Ralhan R (2006) Detection of RASSF1 A and RAR? Hypermethylation in Serum DNA from Breast Cancer Patients. Epigenetics 1:88–93

    PubMed  Google Scholar 

  • Sidransky D (1997) Nucleic acid-based methods for the detection of cancer. Science 278:1054–1058

    CAS  PubMed  Google Scholar 

  • Sidransky D (2002) Emerging molecular markers of cancer. Nat Rev Cancer 2:210–219

    CAS  PubMed  Google Scholar 

  • Snell C, Krypuy M, Wong EM, kConFab investigators, Loughrey MB, Dobrovic A (2008) BRCA1 promoter methylation in peripheral blood DNA of mutation negative familial breast cancer patients with a BRCA1 tumour phenotype. Breast Cancer Res 10:R12

    PubMed Central  PubMed  Google Scholar 

  • Stathis A, Hotte S, Hirte H, Chen EX, Webster S, Iacobucci A et al (2009) Phase I study of intravenous decitabine in combination with oral vorinostat in patients with advanced solid tumors and non-Hodgkin’s lymphomas (NHL). J Clin Oncol 27:3528

    Google Scholar 

  • Stearns V, Zhou Q, Davidson NE (2007) Epigenetic regulation as a new target for breast cancer therapy. Cancer Invest 25:659–665

    CAS  PubMed  Google Scholar 

  • Su C, Ren ZJ, Wang F, Liu M, Li X, Tang H (2012) PIWIL4 regulates cervical cancer cell line growth and is involved in down-regulating the expression of p14ARF and p53. FEBS Lett 586:1356–1362

    CAS  PubMed  Google Scholar 

  • Suijkerbuijk KPM, van Diest PJ, Van der Wall E (2010) Improving early breast cancer detection: focus on methylation. Ann Oncol 22:24–29

    PubMed  Google Scholar 

  • Terry MB, Delgado-Cruzata L, Vin-Raviv N, Wu HC, Santella RM (2011) DNA methylation in white blood cells: association with risk factors in epidemiologic studies. Epigenetics 6:828–837

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thomas S, Munster PN (2009) Histone deacetylase inhibitor induced modulation of anti-estrogen therapy. Cancer Lett 280:184–191

    CAS  PubMed  Google Scholar 

  • Umbricht CB, Evron E, Gabrielson E, Ferguson A, Marks J, Sukumar S (2001) Hypermethylation of 14-3-3 sigma (stratifin) is an early event in breast cancer. Oncogene 20:3348–3353

    CAS  PubMed  Google Scholar 

  • Van De Voorde L, Speeckaert R, Van Gestel D, Bracke M, De Neve W, Delanghe J et al (2012) DNA methylation-based biomarkers in serum of patients with breast cancer. Mutat Res 751:304–325

    PubMed  Google Scholar 

  • Veeck J, Esteller M (2010) Breast cancer epigenetics: from DNA methylation to microRNAs. J Mammary Gland Biol Neoplasia 15:5–17

    PubMed Central  PubMed  Google Scholar 

  • Virmani AK, Rathi A, Sathyanarayana UG, Padar A, Huang CX, Cunnigham HT et al (2001) Aberrant methylation of the adenomatous polyposis coli (APC) gene promoter 1 A in breast and lung carcinomas. Clin Cancer Res 7:1998–2004

    CAS  PubMed  Google Scholar 

  • Walter BA, Gómez Macias G, Valera VA, Sobel M, Merino MJ (2011) miR-21 expression in pregnancy-associated breast cancer: a possible marker of poor prognosis. J Cancer 2:67–75

    PubMed Central  PubMed  Google Scholar 

  • Wang R, Li LW, Wang RL, Fan QX, Zhao PR, Wang LX, Lu SH (2006) Demethylation of estrogen receptor gene and its re-expression in estrogen receptor-negative breast. Zhonghua Zhong Liu Za Zhi 28:894–897

    CAS  PubMed  Google Scholar 

  • Wang F, Zheng Z, Guo J, Ding X (2010) Correlation and quantitation of microRNA aberrant expression in tissues and sera from patients with breast tumor. Gynecol Oncol 119:586–593

    CAS  PubMed  Google Scholar 

  • Widschwendter M, Berger J, Hermann M, Muller HM, Amberger A, Zeschnigk M et al (2000) Methylation and silencing of the retinoic acid receptor-2 gene in breast cancer. Natl Cancer Inst 92:826–832

    CAS  Google Scholar 

  • Widschwendter M, Apostolidou S, Raum E, Rothenbacher D, Fiegl H, Menon U et al (2008) Epigenotyping in peripheral blood cell DNA and breast cancer risk: a proof of principle study. PLoS One 16:e2656

    Google Scholar 

  • Wojdacz TK, Thestrup BB, Overgaard J, Hansen LL (2011) Methylation of cancer related genes in tumor and peripheral blood DNA from the same breast cancer patient as two independent events. Diagn Pathol 6:116

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wong EM, Southey MC, Fox SB, Brown MA, Dowty JG, Jenkins MA et al (2010) Constitutional methylation of the BRCA1 promoter is specifically associated with BRCA1 mutation-associated pathology in early-onset breast cancer. Cancer Prev Res 4:23–33

    Google Scholar 

  • Wu HC, John EM, Ferris JS, Keegan TH, Chung WK, Andrulis I et al (2011) Global DNA methylation levels in girls with and without a family history of breast cancer. Epigenetics 6:29–33

    PubMed Central  PubMed  Google Scholar 

  • Wu HC, Delgado-Cruzata L, Flom JD, Perrin M, Liao Y, Ferris JS et al (2012) Repetitive element DNA methylation levels in white blood cell DNA from sisters discordant for breast cancer from the New York site of the Breast Cancer Family Registry. Carcinogenesis 33:1946–1952

    Google Scholar 

  • XU X, Gammon MD, Hernandez-Vargas H, Herceg Z, Wetmur JG, Teitelbaum SL et al (2012) DNA methylation in peripheral blood measured by LUMA is associated with breast cancer in population-based study. FASEB J. 26:2657–2666

    Google Scholar 

  • Yan PS, Perry MR, Laux DE, Asare AL, Caldwell CW, Huang TH (2000) CpG island arrays: an application toward deciphering epigenetic signatures of breast cancer. Clin Cancer Res 6:1432–1438

    CAS  PubMed  Google Scholar 

  • Yan PS, Venkataramu C, Ibrahim A, Liu JC, Shen RZ, Diaz NM et al (2006) Mapping geographic zones of cancer risk with epigenetic biomarkers in normal breast tissue. Clin Cancer Res 12:6626–6636

    CAS  PubMed  Google Scholar 

  • Yang X, Ferguson AT, Nass SJ, Phillips DL, Butash KA, Wang SM et al (2000) Transcriptional activation of estrogen receptor alpha in human breast cancer cells by histone deacetylase inhibition. Cancer Res 60:6890–6894

    CAS  PubMed  Google Scholar 

  • Yang X, Phillips DL, Ferguson AT, Nelson WG, Herman, JG, Davidson NE (2001a) Synergistic activation of functional estrogen receptor (ER)-alpha by DNA methyltransferase and histone deacetylase inhibition in human ER-alpha-negative breast cancer cells. Cancer Res 61:7025–7029

    CAS  PubMed  Google Scholar 

  • Yang X, Yan L, Davidson NE (2001b) DNA methylation in breast cancer. Endocr Relat Cancer 8:115–127

    CAS  PubMed  Google Scholar 

  • Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C et al (2007) let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131:1109–1123

    CAS  PubMed  Google Scholar 

  • Zhu J, Yao X (2009) Use of DNA methylation for cancer detection: Promises and challenges. Int J Biochem Cell Biol 41:147–154

    CAS  PubMed  Google Scholar 

  • Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo YY (2008) MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 18:350–359

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pantea Izadi PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Izadi, P., Noruzinia, M. (2015). Epigenetics and Three Main Clinical Aspects of Breast Cancer Management. In: Mehdipour, P. (eds) Epigenetics Territory and Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9639-2_10

Download citation

Publish with us

Policies and ethics