Skip to main content

Calculating Rates and Dates and Interpreting Contaminant Profiles in Biomixed Sediments

  • Chapter
  • First Online:
Environmental Contaminants

Abstract

Contaminant profiles in well-dated sediment cores represent extremely valuable natural archives of environmental contamination, by which contaminant sources, history and cycling may be determined and contaminant concentrations in surface sediments projected into the future. However, most marine and estuarine sediments are mixed by benthic organisms to a depth of at least 2–20 cm, which introduces significant risks of misinterpreting and misapplying these archives if biomixing is not explicitly taken into account. This chapter offers a step-by-step guide to avoiding common pitfalls and appropriately applying biomixed sediment archives to reconstructing contaminant inputs to the environment. By the use of simple models, radioisotope tracers (210Pb, 137Cs) may still be applied to establish geochronologies in biomixed cores and to validate the sedimentation rates and dates derived. Having obtained (and validated) sedimentation and mixing rates for biomixed cores, contaminant profiles may then be interpreted through the further use of models in a way that explicitly accounts for mixing. As with any sediment core, the main caution when one attempts to infer contaminant releases from deposition histories reconstructed from biomixed sediment cores are the unknown possible impacts of environmental variation and change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson RF, Schiff SL, Hesslein RH (1987) Determining sediment accumulation and mixing rates using 210Pb, 137Cs, and other tracers: problems due to postdepositional mobility or coring artifacts. Can J Fish Aquat Sci 44(Suppl. 1):231–250

    Article  CAS  Google Scholar 

  • Appleby PG (2001) Tracking environmental change using lake sediments. In: Last WM, Smol JP (eds) Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Appleby PG (2008) Three decades of dating recent sediments by fallout radionuclides: a review. Holocene 18(1):83–93

    Article  Google Scholar 

  • Bailey JN-L, Macdonald RW, Sanei H, Outridge PM, Johannessen SC, Hochheim K, Barber DG, Stern GA (2013) Change at the margin of the North Water Polynya, Baffin Bay, inferred from organic matter records in dated sediment cores. Mar Geol 341:1–13

    Article  CAS  Google Scholar 

  • Berner RA (1976) Inclusion of adsorption in the modeling of early diagenesis. Earth Planet Sci Lett 29:333–340

    Article  Google Scholar 

  • Blais JM, Kalff J (1995) The influence of lake morphometry on sediment focusing. Limnol Oceanogr 40(3):582–588

    Article  CAS  Google Scholar 

  • Bopp RF, Simpson HJ, Chillrud SN, Robinson DW (1993) Sediment-derived chronologies of persistent contaminants in Jamaica Bay, New York. Estuaries 16(3):608–616

    Article  CAS  Google Scholar 

  • Boudreau BP (1997) Diagenetic models and their implementation. Springer, Berlin

    Book  Google Scholar 

  • Boudreau BP (1998) Mean mixed depth of sediments: the wherefore and the why. Limnol Oceanogr 43:524–526

    Article  Google Scholar 

  • Brown T, Kuzyk ZA, Stow J, Burgess N, Solomon S, Sheldon T, Reimer KJ (2013) Effects-based marine Ecological Risk Assessment at a polychlorinated biphenyl-contaminated site in Saglek, Labrador, Canada. Environ Toxicol Chem 32(2):453–467

    Article  CAS  Google Scholar 

  • Burdige DJ (2006) Geochemistry of marine sediments. Princeton University, Princeton

    Google Scholar 

  • Cai MG, Hong QQ, Wang Y, Luo XJ, Chen SJ, Cai MH, Qiu CR, Huang SY, Mai BX (2012) Distribution of polybrominated diphenyl ethers and decabromodiphenylethane in surface sediments from the Bering Sea, Chukchi Sea, and Canada Basin. Deep Sea Res Part II Top Stud Oceanogr 81–84:95–101

    Article  Google Scholar 

  • Carpenter R, Peterson ML, Bennett JT (1985) 210Pb-derived sediment accumulation and mixing rates for the greater Puget Sound region. Mar Geol 64:291–312

    Article  CAS  Google Scholar 

  • Cesar A, Marín A, Marin-Guirao L, Vita R, Lloret J, Del Valls TA (2009) Integrative ecotoxicological assessment of sediment in Portmán Bay (southeast Spain). Ecotoxicol Environ Saf 72(7):1832–1841

    Article  CAS  Google Scholar 

  • Chant LA, Cornett RJ (1991) Smearing of gravity core profiles in soft sediments. Limnol Oceanogr 36(7):1492–1498

    Article  CAS  Google Scholar 

  • Choueri RB, Cesar A, Torres RJ, Abessa DMS, Morais RD, Pereira CDS, Nascimento MRL, Mozeto AA, Riba I, DelValls TA (2009) Integrated sediment quality assessment in Paranaguá Estuarine System, Southern Brazil. Ecotoxicol Environ Saf 72(7):1824–1831

    Article  CAS  Google Scholar 

  • Cochran JK (1992) Uranium series disequilibrium applications to earth. In: Ivanovich M, Harmon RS (eds) Marine and environmental sciences, pp 334–395. Clarenden, Oxford

    Google Scholar 

  • Cochran JK, Carey AE, Sholkovitz ER, Suprenant LD (1986) The geochemistry of uranium and thorium in coastal marine sediments and sediment porewaters. Geochim Cosmochim Acta 50:663–680

    Article  CAS  Google Scholar 

  • Couture R-M, Gobeil C, Tessier A (2008) Chronology of atmospheric deposition of arsenic inferred from reconstructed sedimentary records. Environ Sci Technol 42(17):6508–6513

    Article  CAS  Google Scholar 

  • Crusius J, Anderson RF (1995) Evaluating the mobility of 137Cs, 239+240Pu and 210Pb from their distributions in laminated lake sediments. J Paleolimnol 13:119–141

    Article  Google Scholar 

  • Crusius J, Kenna TC (2007) Ensuring confidence in radionuclide-based sediment chronologies and bioturbation rates. Estuar Coast Shelf Sci 71(3–4):537–544

    Article  Google Scholar 

  • Crusius J, Bothner MH, Sommerfield CK (2004) Bioturbation depths, rates and processes in Massachusetts Bay sediments inferred from modeling of 210Pb and 239+240Pu profiles. Estuar Coast Shelf Sci 61(4):643–655

    Article  CAS  Google Scholar 

  • Dachs J, Lohmann R, Ockenden WA, Mejanelle L, Eisenreich SJ, Jones KC (2002) Oceanic biogeochemical controls on global dynamics of persistent organic pollutants. Environ Sci Technol 36:4229–4237

    Article  CAS  Google Scholar 

  • Eisenreich SJ, Capel PD, Robbins JA, Bourbonniere R (1989) Accumulation and diagenesis of chlorinated hydrocarbons in lacustrine sediments. Environ Sci Technol 23:1116–1126

    Article  CAS  Google Scholar 

  • Emerson SR, Hedges J (2003) Treatise on geochemistry. In: Holland HD, Turekian K (eds) pp 293–319. Elsevier, New York

    Google Scholar 

  • Erickson BE, Helz GR (2000) Molybdenum (VI) speciation in sulfidic waters. Stability and lability of thiomolybdates. Geochim Cosmochim Acta 64:1149–1158

    Article  CAS  Google Scholar 

  • Feyte S, Gobeil C, Tessier A, Cossa D (2012) Mercury dynamics in lake sediments. Geochim Cosmochim Acta 82:92–112

    Article  CAS  Google Scholar 

  • Francois R, Frank M, Rutgers van der Loeff M, Bacon MP, Geibert W, Kienast S, Anderson RF, Bradtmiller L, Chase Z, Henderson G, Marcantonio F, Allen SE (2007) Comment on “Do geochemical estimates of sediment focusing pass the sediment test in the equatorial Pacific?” by M. Lyle et al. Paleoceanography 22(1):PA1216

    Article  Google Scholar 

  • Froelich PN, Klinkhammer GP, Bender ML, Luedtke NA, Heath GR, Cullen D, Dauphin P, Hammond DE, Hartman B, Maynard V (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis. Geochim Cosmochim Acta 43:1075–1090

    Article  CAS  Google Scholar 

  • Fuller CC, van Geen A, Baskaran M, Anima R (1999) Sediment chronology in San Francisco Bay, California, defined by 210Pb, 234Th, 137Cs, and 239,240Pu. Mar Chem 64:7–27

    Article  CAS  Google Scholar 

  • Goni MA, Hedges JI (1995) Sources and reactivities of marine-derived organic matter in coastal sediments as determined by alkaline CuO oxidation. Geochim Cosmochim Acta 59(14):2965–2981

    Article  CAS  Google Scholar 

  • Guinasso NL, Schink DR (1975) Quantitative estimates of biological mixing rates in abyssal sediments. J Geophys Res 80(21):3032–3043

    Article  Google Scholar 

  • Gustafsson O, Axelman J, Broman D, Eriksson M, Dahlgaard H (2001) Process-diagnostic patterns of chlorobiphenyl congeners in two radiochronologically characterized sediment cores from the northern Baffin Bay. Chemosphere 45(6–7):759–766

    Article  CAS  Google Scholar 

  • Hare A, Stern GA, Macdonald RW, Kuzyk ZA, Wang F (2008) Contemporary and preindustrial mass budgets of mercury in the Hudson Bay marine system: the role of sediment recycling. Sci Total Environ 406:190–204. doi:110.1016/j.scitotenv.2008.1007.1033

    Article  CAS  Google Scholar 

  • Hare A, Stern GA, Kuzyk ZA, Macdonald RW, Johannessen SC, Wang F (2010) Natural and anthropogenic mercury distribution in marine sediments from Hudson Bay, Canada. Environ Sci Technol 44(15):5805–5811

    Article  CAS  Google Scholar 

  • Harvey BR, Lovett MB, Boggis SJ (1987) Some experiences in controlling contamination of environmental materials during sampling and processing for low-level actinide analysis. J Radioanal Nucl Chem 115(2):357–368

    Article  CAS  Google Scholar 

  • Huerta-Diaz MA, Morse JW (1992) Pyritization of trace metals in anoxic marine sediments. Geochim Cosmochim Acta 56:2681–2702

    Article  CAS  Google Scholar 

  • Hülse P, Bentley SJ Sr (2012) A 210Pb sediment budget and granulometric record of sediment fluxes in a subarctic deltaic system: the Great Whale River, Canada. Estuar Coast Shelf Sci 109:41–52

    Article  Google Scholar 

  • Johannessen SC, Macdonald RW (2012) There is no 1954 in that core! Interpreting sedimentation rates and contaminant trends in marine sediment cores. Mar Pollut Bull 64(4):675–678

    Article  CAS  Google Scholar 

  • Johannessen SC, Macdonald RW, Eek KM (2005) Historical trends in mercury sedimentation and mixing in the Strait of Georgia, Canada. Environ Sci Technol 39:4361–4368

    Article  CAS  Google Scholar 

  • Johannessen SC, Macdonald RW, Wright CA, Burd B, Shaw DP, van Roodselaar A (2008) Joined by geochemistry, divided by history: PCBs and PBDEs in Strait of Georgia sediments. Mar Environ Res 66:66S112–120

    Google Scholar 

  • Jørgensen BB (1977) The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnol Oceanogr 22(5):814–832

    Article  Google Scholar 

  • Kadko D, Cochran JK, Lyle M (1987) The effect of bioturbation and adsorption gradients on solid and dissolved radium profiles in sediments from the eastern equatorial Pacific. Geochim Cosmochim Acta 51:1613–1623

    Article  CAS  Google Scholar 

  • Koide M, Soutar A, Goldberg ED (1972) Marine geochronology with 210Pb. Earth Planet Sci Lett 14(3):442–446

    Article  CAS  Google Scholar 

  • Kuzyk ZA, Stow JP, Burgess NM, Solomon SM, Reimer KJ (2005) PCBs in sediments and the coastal food web near a local contaminant source in Saglek Bay, Labrador. Sci Total Environ 351-352:264–284

    Article  CAS  Google Scholar 

  • Kuzyk ZA, Macdonald RW, Johannessen SC, Gobeil C, Stern GA (2009) Towards a sediment and organic carbon budget for Hudson Bay. Mar Geol 264:190–208

    Article  CAS  Google Scholar 

  • Kuzyk ZA, Macdonald RW, Johannessen SC, Stern GA (2010) Biogeochemical controls on PCB deposition in Hudson Bay. Environ Sci Technol 44:3280–3285

    Article  CAS  Google Scholar 

  • Kuzyk ZA, Gobeil C, Macdonald RW (2013) 210Pb and 137Cs in margin sediments of the Arctic Ocean: controls on boundary scavenging. Global Biogeochem Cycles 27:422–439

    Article  CAS  Google Scholar 

  • Lauff GH (ed) (1967) Estuaries. American Association for the Advancement of Science, Washington, DC

    Google Scholar 

  • Lavelle JW, Massoth GJ, Crecelius EA (1985) NOAA Technical Memorandum ERL PMEL-61, Pacific Marine Environmental Laboratory, Seattle, WA

    Google Scholar 

  • Lavelle JW, Massoth GJ, Crecelius EA (1986) Accumulation rates of recent sediments in Puget Sound, Washington. Mar Geol 72:59–70

    Article  CAS  Google Scholar 

  • Lebel J, Silverberg N, Sundby B (1982) Gravity core shortening and pore water chemical gradients. Deep-Sea Res 29:1365–1372

    Article  CAS  Google Scholar 

  • Lu X, Matsumoto E (2005) How to cut a sediment core for 210Pb geochronology. Environ Geol 47:804–810. doi:810.1007/s00254-00004-01209-00257

    Article  CAS  Google Scholar 

  • Lyle M, Mitchell N, Pisias N, Mix A, Martinez JI, Paytan A (2005) Do geochemical estimates of sediment focusing pass the sediment test in the equatorial Pacific? Paleoceanography 20(1):PA1005

    Article  Google Scholar 

  • Lyle M, Pisias N, Paytan A, Martinez JI, Mix A (2007) Reply to comment by R. Francois et al. on “Do geochemical estimates of sediment focusing pass the sediment test in the equatorial Pacific?”: Further explorations of 230Th normalization. Paleoceanography 22(1):PA1217

    Article  Google Scholar 

  • Macdonald RW, Thomas DJ (1991) Chemical interactions and sediments of the western Canadian Arctic shelf. Cont Shelf Res 11(8–10):843–863

    Article  Google Scholar 

  • Macdonald R, Cretney WJ, Crewe N, Paton D (1992) A history of octachlorodibenzo-p-dioxin, 2,3,7,8-tetrachlorodibenzofuran, and 3,3’,4,4’-tetrachlorobiphenyl contamination in Howe Sound, British Columbia. Environ Sci Technol 26(8):1544–1550

    Article  CAS  Google Scholar 

  • Macdonald R, Harner T, Fyfe J (2005) Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data. Sci Total Environ 342:5–86

    Article  CAS  Google Scholar 

  • Meyers PA, Ishiwatari R (1993) Lacustrine organic geochemistry-an overview of indicators of organic matter sources, diagenesis in lake sediments. Org Geochem 20:867–900

    Article  CAS  Google Scholar 

  • Monetti MA (1996) Worldwide Deposition of Strontium-90 through 1990, Environmental Measurements Laboratory, U.S. Department of Energy, New York

    Google Scholar 

  • Morse JW, Luther GW III (1999) Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochim Cosmochim Acta 63(19/20):3373–3378

    Article  CAS  Google Scholar 

  • Muir DCG, Wang X, Yang F, Nguyen N, Jackson TA, Evans MS, Douglas M, Kock G, Lamoureux S, Pienitz R, Smol JP, Vincent WF, Dastoor A (2009) Spatial trends and historical deposition of mercury and lead in eastern and northern Canada inferred from lake sediment cores. Environ Sci Technol 43:4802–4809

    Article  CAS  Google Scholar 

  • O’Day PA, Vlassopoulos D, Root R, Rivera N (2004) The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions. Proceedings of the National Academy of Sciences of the USA 101:13703–13708

    Google Scholar 

  • Ojala AEK, Francus P, Zolitschka B, Besonen M, Lamoureux SF (2012) Characteristics of sedimentary varve chronologies—A review. Quatern Sci Rev 43:45–60

    Article  Google Scholar 

  • Oughton DH, Borretzen P, Salbu B, Tronstad E (1997) Mobilisation of 137Cs and 90Sr from sediments: potential sources to arctic waters. Sci Total Environ 202:155–165

    Article  CAS  Google Scholar 

  • Outridge PM, Sanei H, Stern GA, Hamilton PB, Goodarzi F (2007) Evidence for control of mercury accumulation rates in Canadian High Arctic lake sediments by variations in aquatic primary productivity. Environ Sci Technol 41(15):5259–5265

    Article  CAS  Google Scholar 

  • Outridge PM, Macdonald RW, Wang F, Stern GA, Dastoor AP (2008) A mass balance inventory of mercury in the Arctic Ocean. Environ Chem 5(2):89–111

    Article  CAS  Google Scholar 

  • Power EA, Chapman PM (1992) Assessing sediment quality, Sediment toxicity assessment. In: Burton GAJ (ed) pp 1–18. Lewis, Boca Raton

    Google Scholar 

  • Ramdine G, Fichet D, Louis M, Lemoine S (2012) Polycyclic aromatic hydrocarbons (PAHs) in surface sediment and oysters (Crassostrea rhizophorae) from mangrove of Guadeloupe: levels, bioavailability, and effects. Ecotoxicol Environ Saf 79:80–89

    Article  CAS  Google Scholar 

  • Robbins JA (1978) Geochemical and geophysical applications of radioactive lead. The biogeochemistry of lead in the environment. In: Nriagu JO (ed) Elsevier/North-Holland Biomedical Press, Amsterdam, pp 285–393

    Google Scholar 

  • Robbins JA, Edgington DN (1975) Determination of recent sedimentation rates in Lake Michigan using Pb-210 and Cs-137. Geochim Cosmochim Acta 39:285–304

    Article  CAS  Google Scholar 

  • Robbins JA, Holmes C, Halley R, Bothner M, Shinn E, Graney J, Keeler G, tenBrink M, Orlandini KA, Rudnick D (2000) Time-averaged fluxes of lead and fallout radionuclides to sediments in Florida Bay. J Geophys Res 105(C12):28,805–28,821

    Google Scholar 

  • Sholkovitz ER, Mann DR (1984) The pore water chemistry of 238,239Pu and 137Cs in sediments of Buzzards Bay, Massachusetts. Geochim Cosmochim Acta 48:1107–1114

    Article  CAS  Google Scholar 

  • Sholkovitz ER, Cochran JK, Carey AE (1983) Laboratory studies of the diagenesis and mobility of 239,240Pu and 137Cs in near-shore sediments. Geochim Cosmochim Acta 47:1369–1379

    Article  CAS  Google Scholar 

  • Silverberg N, Nguyen HV, Delibrias G, Koide M, Sundby B, Yokoyama Y, Chesselet R (1986) Radionuclide profiles, sedimentation rates, and bioturbation in modern sediments of the Laurentian Trough, Gulf of St. Lawrence. Oceanol Acta 9:285–290

    CAS  Google Scholar 

  • Smith JN (2001) Why should we believe 210Pb sediment geochronologies? J Environ Radioact 55:121–123

    Article  CAS  Google Scholar 

  • Smith JN, Ellis KM, Nelson DM (1987) Time-dependent modeling of fallout radionuclide transport in a drainage basin: significance of “slow” erosional and “fast” hydrological components. Chem Geol 63:157–180

    Article  CAS  Google Scholar 

  • Smith CR, Pope RH, DeMaster DJ, Magaard L (1993) Age-dependent mixing of deep-sea sediments. Geochim Cosmochim Acta 57:1473–1488

    Article  CAS  Google Scholar 

  • Stern GA, Braekevelt E, Helm PA, Bidleman TF, Outridge PM, Lockhart WL, McNeeley R, Rosenberg B, Ikonomou MG, Hamilton P, Tomy GT, Wilkinson P (2005) Modern and historical fluxes of halogenated organic contaminants to a lake in the Canadian arctic, as determined from annually laminated sediment cores. Sci Total Environ 342:223–243

    Article  CAS  Google Scholar 

  • Sugai SF, Alpern MJ, Reeburgh WS (1994) Episodic deposition and 137Cs immobility in Skan Bay sediments: a ten-year 210Pb and 137Cs time series. Mar Geol 116:351–372

    Article  CAS  Google Scholar 

  • Valette-Silver NJ, Bricker SB, Salomons W (1993) Historical trends in contamination of estuarine and coastal sediments: an introduction to the dedicated issue. Estuaries 16(3):575–576

    Article  Google Scholar 

  • Yamashita N, Kannan K, Imagawa T, Villeneuve DL, Hashimoto S, Miyazaki A, Giesy JP (2000) Vertical profile of polychlorinated dibenzo-p-dioxins, dibenzofurans, naphthalenes, biphenyls, polycyclic aromatic hydrocarbons, and alkylphenols in a sediment core from Tokyo Bay, Japan. Environ Sci Technol 34(17):3560–3567

    Article  CAS  Google Scholar 

  • Yunker MB, Macdonald RW, Snowdon LR, Fowler BR (2011) Alkane and PAH biomarkers as tracers of terrigenous organic carbon in Arctic Ocean sediments. Org Geochem 42:1109–1146

    CAS  Google Scholar 

  • Zheng Y, Anderson RF, van Geen A, Kuwabara J (2000) Authigenic molybdenum formation in marine sediments: a link to pore water sulfide in the Santa Barbara Basin. Geochim Cosmochim Acta 64(24):4165–4178

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We owe a debt to many colleagues but in particular John Smith and Charles Gobeil for helpful discussions that have contributed to the development of the ideas presented in this chapter. We also thank the editors and reviewers for their comments on an earlier draft of the manuscript. In a paper like this, we have many supporting organizations to thank for providing the means to collect cores and to think about how to apply the records they contain to program objectives. In particular, we are deeply appreciative of the Canada Excellence Research Chair Program of NSERC for support to Z. Kuzyk while writing this chapter, and to the University of Manitoba (RM, ZK), ArcticNet (RM, ZK), Northern Contaminants Program (NCP), Aboriginal Affairs and Northern Development Canada (RM, ZK), Metro Vancouver (RM, SJ), the Canadian International Polar Year (IPY) Program, and Fisheries and Oceans Canada (RM, SJ) for financial and other support during numerous sampling missions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zou Zou A. Kuzyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kuzyk, Z., Macdonald, R., Johannessen, S. (2015). Calculating Rates and Dates and Interpreting Contaminant Profiles in Biomixed Sediments. In: Blais, J., Rosen, M., Smol, J. (eds) Environmental Contaminants. Developments in Paleoenvironmental Research, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9541-8_4

Download citation

Publish with us

Policies and ethics