Skip to main content

Optical Processors as Conceptual Tools for Designing Nonconventional Devices

  • Chapter
  • First Online:
Advanced Lasers

Abstract

We discuss the use of nonconventional optical processors for generating irradiance distributions, which are useful for visualizing the characteristics of imaging devices that extend the depth of field. Our discussion starts with the use of binary masks for generating nonconventional irradiance distributions, which display the variations of the impulse response with focus errors. By using an anamorphic optical processor these irradiance distributions can easily be transformed into variations of the optical transfer function vs focus errors. Next, another anamorphic optical processor is used for generating the ambiguity function of a pupil aperture, which helps to visualize the variations of the optical transfer function with variable focus error. Finally, we translate the integral transform associated with the evaluation of the ambiguity function into tunable devices for controlling the depth of field, without modifying the size of the pupil aperture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jacquinot, P.: Apodization, Appendix E, in concepts of classical optics, John Strong, pp. 410–418. W. H. Freeman, San Francisco (1958)

    Google Scholar 

  2. Marechal, A., Françon, M.: Diffraction Structure Des Images, pp. 152–155. Masson, Paris (1970)

    Google Scholar 

  3. Papoulis, A.: Systems and Transforms with Applications in Optics, pp. 442–444. McGraw-Hill, New York (1968)

    Google Scholar 

  4. Steel, W.H.: Interferometry, pp. 23, 234, 248–249. Cambridge University Press, Cambridge (1983)

    Google Scholar 

  5. Goodman, J.W.: Introduction to Fourier Optics, pp. 151–154. McGraw-Hill, New York (1996)

    Google Scholar 

  6. Ojeda-Castañeda, J., Berriel-Valdos, L.R., Montes E.: Bessel annular apodizers: imaging characteristics. Appl. Opt. 26(10), 2770–2772 (1987)

    Article  ADS  Google Scholar 

  7. McCutchen, C.W.: Generalized aperture and three-dimensional diffraction image. J. Opt. Soc. Am. 54(2), 240–244 (1964)

    Article  ADS  Google Scholar 

  8. Ojeda-Castañeda, J., Berriel-Valdos, L.R.: Arbitrarily high focal depth with finite apertures. Opt. Lett. 13(3), 183–185 (1988)

    Article  ADS  Google Scholar 

  9. Ojeda-Castañeda, J., Andres, P., Diaz, A.: Strehl ratio with low sensitivity to spherical aberration. J. Opt. Soc. Am. A 5(8), 1233–1236 (1988)

    Article  ADS  Google Scholar 

  10. Ojeda-Castañeda, J., Tepichin, E., Pons, A.: Apodization of annular apertures: Strehl ratio. Appl. Opt. 27(24), 5140–5145 (1988)

    Article  ADS  Google Scholar 

  11. Mino, M., Okano, Y.: Improvement in the OTF of a defocused optical system through the use of shaded apertures. Appl. Opt. 10(10), 2219 (1971)

    Article  ADS  Google Scholar 

  12. Hauesler, G.: A method to increase the depth of focus by two step image processing. Opt. Commun. 6(1), 38–42 (1972)

    Article  ADS  Google Scholar 

  13. Chung, C.S., Hopkins, H.H.: Influence of nonuniform amplitude on the optical transfer function. Appl. Opt. 28(6), 90–91 (1989)

    Article  Google Scholar 

  14. Ojeda-Castañeda, J., Yépez-Vidal, E., Gómez-Sarabia, C.M.: Multiple-frame photography for extended depth of field. Appl. Opt. 52(10), D84–D90 (2013)

    Article  Google Scholar 

  15. Lohmann, A.W., Ojeda-Castañeda, J., Serrano-Heredia, A.: Trading dimensionality in signal processing. Opt. Laser Technol. 28(2), 101–107 (1996)

    Article  ADS  Google Scholar 

  16. Ojeda-Castañeda, J., Lohmann, A.W.: Young’s experiment in signal synthesis, Chapter 14, Trends in Optic, Anna Consortini Editor, pp. 263–280. Academic Press, San Diego (1996)

    Google Scholar 

  17. Lohmann, A.W., Ojeda-Castañeda, J., Frausto, C.: Optical simulation of free-space propagation. Opt. Commun. 157(1–6), 7–12 (1998)

    Article  ADS  Google Scholar 

  18. Ojeda-Castañeda, J., Castro, A.: Simultaneous Cartesian coordinate display of defocused optical transfer functions. Opt. Lett. 23(13), 1049–1051 (1998)

    Article  ADS  Google Scholar 

  19. Woodward, P.M.: Radar ambiguity analysis, Technical Note No. 731. Royal Radar Establishment, London (1967)

    Google Scholar 

  20. Papoulis, A.: Ambiguity function in Fourier optics. J. Opt. Soc. Am. 64(6), 779–788 (1974)

    Article  ADS  Google Scholar 

  21. Guigay, J.P.: The ambiguity function in diffraction and isoplanatic imaging by partially coherent beams. Opt. Commun. 26(2), 136–138 (1978)

    Article  ADS  Google Scholar 

  22. Marks, R.J., Walkup, J.K., Krile, T.F.: Ambiguity function display: an improved coherent processor. Appl. Opt. 16(3), 746–750 (1977)

    Article  ADS  Google Scholar 

  23. Brenner, K.-H., Lohmann, A.W., Ojeda-Castañeda, J.: The ambiguity function as a polar display of the OTF. Opt. Commun. 44(5), 323–326 (1983)

    Article  ADS  Google Scholar 

  24. Ojeda-Castañeda, J., Berriel-Valdos, L.R., Montes, E.: Ambiguity function as a design tool for high focal depth. Appl. Opt. 27(4), 790–795 (1988)

    Article  ADS  Google Scholar 

  25. Ojeda-Castañeda, J., Noyola-Isgleas, A.: High focal depth by apodization and digital restoration. Appl. Opt. 27(12), 2583–2586 (1988)

    Article  ADS  Google Scholar 

  26. Dowski, E.R., Cathey, T.W.: Extended depth of field through wave-front coding. Appl. Opt. 34(11), 1859–1865 (1995)

    Article  ADS  Google Scholar 

  27. Cook, C. E., Bernfeld, M.: Radar Signals: An Introduction to Theory and Applications, pp. 59–108. Arctech House, Norwood (1993)

    Google Scholar 

  28. George, N., Chi, W.: Extended depth of field using a Logarithmic asphere. J. Opt. Pure Appl. 5, s157–s163 (2003)

    Article  Google Scholar 

  29. Muyo, G., Harvey, A.R.: Decomposition of the optical transfer function: wavefront coding imaging systems. Opt. Lett. 30(20), 2715–2717 (2005)

    Article  ADS  Google Scholar 

  30. Sauceda-Carvajal, A., Ojeda-Castaneda, J.: High focal depth with fractional-power wave fronts. Opt. Lett. 29(6), 560–562 (2004)

    Article  ADS  Google Scholar 

  31. Castro, A., Ojeda-Castaneda, J.: Asymmetric phase masks for extended depth of field. Appl. Opt. 43(17), 3474–3479 (2004)

    Article  ADS  Google Scholar 

  32. Ojeda-Castañeda, J.: Focus error operator and related special functions. J. Opt. Soc. Am. 73(8), 1042–1047 (1983)

    Article  ADS  Google Scholar 

  33. Ojeda-Castañeda, J., Boivin, A.: The influence of wave aberrations: an operator approach. Can. J. Phys. 63(2), 250–253 (1985)

    Article  ADS  Google Scholar 

  34. Ojeda-Castañeda, J., Noyola-Isgleas, A.: Differential operator for scalar wave propagation. J. Opt. Soc. Am. A 5(10), 1605–1609 (1988)

    Article  ADS  Google Scholar 

  35. Ojeda-Castañeda, J., Berriel-Valdos, L.R., Montes, E.: Ambiguity function as a design tool for high focal depth. Appl. Opt. 27(4), 790–795 (1988)

    Article  ADS  Google Scholar 

  36. Marks, R.J. II, Walkup, J.K., Krile, T.F.: Ambiguity function display: an improved coherent processor. Appl. Opt. 16(3), 746–750 (1977)

    Article  ADS  Google Scholar 

  37. Castro, A., Ojeda-Castaneda, J., Lohmann, A.W.: Bow-tie effect: differential operator. Appl. Opt. 45(30), 7878–7884 (2006)

    Article  ADS  Google Scholar 

  38. Ojeda-Castañeda, J., Yépez-Vidal, E., García-Almanza, E.: Complex amplitude filters for extended depth of field. Photonics Lett. Pol. 2, 162–164 (2010)

    Google Scholar 

  39. Ojeda-Castañeda J., Ledesma S. and Gomez-Sarabia C. M., Hyper Gaussian Windows with fractional wavefronts. Photonics Lett. Pol. 5(1), 23–25 (2013)

    Google Scholar 

  40. Brenner, N., Rader, C.: IEEE Acoustics. Speech Signal Process. 24, 264–266 (1976)

    Article  Google Scholar 

  41. Plummer, W.T., Baker, J.G., van Tassell, J.: Photographic optical systems with nonrotational aspheric surfaces. Appl. Opt. 38(16), 3572–2592 (1999)

    Article  ADS  Google Scholar 

  42. Kitajima, I.: “Improvement in lenses”. British Patent 250, 268 (July 29, 1926)

    Google Scholar 

  43. Lohmann, A.W.: Lente a focale variabili. Italian Patent 727, 848 (June 19, 1964)

    Google Scholar 

  44. Lohmann, A.W.: Improvements relating to lenses and to variable optical lens systems formed for such a lens. Patent Specification 998,191, London (1965)

    Google Scholar 

  45. Lohmann, A.W.: A new class of varifocal lenses. Appl. Opt. 9(7), 1669–1671 (1970)

    Article  ADS  Google Scholar 

  46. Alvarez, L.W.: Two-element variable-power spherical lens. US Patent 3, 305, 294 (December 3, 1964)

    Google Scholar 

  47. Alvarez, L.W., Humphrey, W.H.: Variable power lens and system. US Patent 3, 507, 565 (April 21, 1970)

    Google Scholar 

  48. Ojeda-Castañeda, J., Landgrave, J.E.A., Gómez-Sarabia, C.M.: The use of conjugate phase plates in the analysis of the frequency response of optical systems designed for an extended depth of field. Appl. Opt. 47(22), E99–E105 (2008)

    Article  ADS  Google Scholar 

  49. Ojeda-Castañeda, J., Aguilera Gómez, E., Plascencia Mora, H., Torres Cisneros, M., Ledesma Orozco, E.R., León Martínez, A., Pacheco Santamaría, J.S., Martínez Castro, J.G.: Carlos Salas Segoviano R., U. S. Patent 8, 159, 573B2 (April 17, 2012)

    Google Scholar 

  50. Ojeda-Castañeda, J., Gómez-Sarabia, C.M.: Key concepts for extending the depth of field with high resolution. Opt. Pura Apl. 45(4) 449–459 (2012)

    Article  Google Scholar 

  51. Ojeda-Castañeda, J., Yépez-Vidal, E., García-Almanza, E., Gómez-Sarabia, C.M.: “Tunable Gaussian mask for extending the depth of field”. Photonics Lett. Pol. 4(3), 115–117 (2012)

    Google Scholar 

  52. Lohmann, A.W., Paris, D.P.: “Variable Fresnel Zone Pattern” Appl. Opt. 6(9), 1567–1570 (1967)

    Article  ADS  Google Scholar 

  53. Burch, J.M., Williams, D.C.: Varifocal moiré zone plates for straightness measurement. Appl. Opt. 16(9), 2445–2450 (1977)

    Article  ADS  Google Scholar 

  54. Bernet, S., Jesacher, A., Fuerhapter, S., Maurer, C., Ritsch-Marte, M.: “Quantitative imaging of complex samples by spiral phase contrast microscopy”. Opt. Express 14(9) 3792–3805 (2006)

    Article  ADS  Google Scholar 

  55. Jesacher, A., Fürhapter, S., Bernet, S., Ritsch-Marte, M.: “Spiral interferogram analysis”. J. Opt. Soc. Am. A 23(6) 1400–1409 (2006)

    Article  ADS  Google Scholar 

  56. Bernet, S., Ritsch-Marte, M.: “Optical device with a pair of diffractive optical elements”. US Patent 0134869 A1 (June 3, 2010)

    Google Scholar 

  57. Ojeda-Castaneda, J., Ledesma, S., Gomez-Sarabia, C.M.: Tunable apodizers and tunable focalizers using helical pairs. Photonics Lett. Pol. 5(1), 20–22 (2013)

    Google Scholar 

  58. Ojeda-Castaneda, J., Gomez-Sarabia, C.M., Ledesma, S.: Tunable focalizers: axicons, lenses and axilenses, Tribute to H. John Caulfield, SPIE Proceedings 8833, 88330601–88330606 (2013)

    Google Scholar 

  59. Bryngdahl, O.: Radial- and circular-fringe interferograms. J. Opt. Soc. Am. 63(9), 1098–1104 (1973)

    Article  ADS  Google Scholar 

  60. Ojeda-Castañeda, J., Ledesma, S., Gomez-Sarabia, C.M.: Hyper Gaussian Windows with fractional wavefronts. Photonics Lett. Pol. 5(1), 23–25 (2013)

    Google Scholar 

  61. Ojeda-Castaneda, J., Ledesma, S., Gomez-Sarabia, C.M.: Helical apodizers for tunable hyper Gaussian masks, Novel Optical System Design and Optimization XVI, SPIE Proceedings 8842, 88420N-1-88420N-6 (2013)

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of CONACYT, grant 157673, Fondo: I0017, as well as the grant 1477-CIO-UG-2013, DAIP, University of Guanajuato.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Ojeda-Castañeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ojeda-Castañeda, J., Ledesma, S., Yépez-Vidal, E., Gomez-Sarabia, C., Torres-Cisneros, M. (2015). Optical Processors as Conceptual Tools for Designing Nonconventional Devices. In: Shulika, O., Sukhoivanov, I. (eds) Advanced Lasers. Springer Series in Optical Sciences, vol 193. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9481-7_8

Download citation

Publish with us

Policies and ethics