Skip to main content

Superradiant Lasing and Collective Dynamics of Active Centers with Polarization Lifetime Exceeding Photon Lifetime

  • Chapter
  • First Online:
Advanced Lasers

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 193))

Abstract

Analytic theory, numerical simulation, and qualitative analysis of the threshold conditions, nonlinear dynamics, and spectral features of the superradiant emission and cooperative radiative behavior of a dense many-particle system in a low-Q Fabry–Perot cavity with distributed feedback of counter-propagating electromagnetic waves are given. Various systems with extreme spatial-spectral density of radiating particles as active media of superradiant lasers are discussed, including those with almost homogeneous broadening as well as strongly inhomogeneous broadening of a spectral line. In the case of experimental verification, the phenomenon of CW superradiant lasing will be promising in the information optoelectronics and condensed matter physics, in particular, for managing novel oscillators with complicated dynamical spectra and for creating unprecedented diagnostics of quantum coherent many-particle effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abraham, N.B., Mandel, P., Narducci, L.M. Progress in Optics, vol. 25, pp. 1–190. Noth-Holland, Amsterdam (1988) (ed. by E. Wolf)

    Google Scholar 

  2. Ammerlahn, D., Kuhl, J., Grote, B. et al.: Collective radiative decay of light- and heavy-hole exciton polaritons in multiple-quantum-well structures. Phys. Rev. B 62(11),[AQ2] 7350 (2000)

    Google Scholar 

  3. Arecchi, F.T., Harrison, R.G.: Instabilities and Chaos in Quantum Optics. Springer, London (2011), Chapters 1–3

    Google Scholar 

  4. Arias, D.H., Stone, K.W., Vlaming, S.M., et al.: Thermally-Limited Exciton Delocalization in Superradiant Molecular Aggregates. J. Phys. Chem. B 117, 4553–4559 (2013)

    Google Scholar 

  5. Avetisyan, Yu.A., Trifonov, E.D.: Maxwell-Schrödinger equations for a dilute gas Bose-Einstein condensate coupled to an electromagnetic field. J. Exp. Theor. Phys. 106, 426 (2008).

    Google Scholar 

  6. Belyanin, A.A., Kocharovsky, V.V., Kocharovsky, Vl.V.: Collective QED processes of electronhole recombination and electron-positron annihilation in a strong magnetic field. Quant. Semicl. Opt. JEOS, Part B 9, 1–44 (1997)

    Google Scholar 

  7. Blokhin, S.A., Maleev, N.A., Kuzmenkov, A.G., et al.: Vertical-cavity surface-emitting lasers based on submonolayer InGaAs quantum dots. IEEE J. Quant. Electron. 42, 851–858 (2006)

    Google Scholar 

  8. Bohnet, J.G., Chen, Z., Weiner, J.M., et al.: A steady-state superradiant laser with less than one intracavity photon. Nature 484, 78–81 (2012)

    Google Scholar 

  9. Boiko, D.L., Vasil’ev, P.P.: Superradiance dynamics in semiconductor laser diode structures. Opt. Express 20(9), 9501 (2012)

    Google Scholar 

  10. Dai, D.C., Monkman, A.P.: Observation of superfluorescence from a quantum ensemble of coherent excitons in a ZnTe crystal: Evidence for spontaneous Bose-Einstein condensation of excitons. Phys. Rev. B 84, 115206 (2011)

    Google Scholar 

  11. Deng, H., Haug, H., Yamamoto, Y.: Exciton-polariton Bose-Einstein condensation. Rev. Mod. Phys. 82, 1489 (2010)

    Google Scholar 

  12. Dicke, R.H.: Coherence in Spontaneous Radiation Processes. Phys. Rev. 93, 99 (1954)

    Google Scholar 

  13. Ding, C.R., et al.: Observation of In-related collective spontaneous emission (superfluorescence) in Cd0.8Zn0.2Te:In crystal. Appl. Phys. Lett. 101, 091115 (2012)

    Google Scholar 

  14. Florian, R., Schwan, L.O., Schmid, D.: Time-resolving experiments on Dicke superfluorescence of O2-centers in KCl. Two-color superfluorescence. PRA 29, 2709 (1984)

    Google Scholar 

  15. Germann, T.D., Strittmatter, A.: High-power semiconductor disk laser based on InAs/GaAs submonolayer quantum dots. Appl. Phys. Lett. 92, 101123 (2008)

    Google Scholar 

  16. Gibbs, H.M., Khitrova, G., Koch, S.W.: Exciton-polariton light-semiconductor coupling effects. Nat. Photon. 5, 273 (2011)

    Google Scholar 

  17. Greenberg, J.A., Gauthier, D.J.: Steady-state, cavity-less, multimode superradiance. Phys. Rev. A 86 013823 (2012)

    Google Scholar 

  18. Heritage, J.P., Weiner, A.M.: Advances in spectral optical code-division multiple-access communications. IEEE J. Sel. Top. Quant. Electron. 13, 1351 (2007)

    Article  Google Scholar 

  19. High, A.A., Leonard, J.R., Remeika, M., et al.: Condensation of excitons in a trap. Nano Lett. 12, 2605 (2012)

    Google Scholar 

  20. Inouye, S., Chikkatur, A.P., Stamper-Kurn, D.M., et al.: Superradiant Rayleigh scattering from a Bose-Einstein condensate. Science 285, 571 (1999)

    Google Scholar 

  21. Jho, Y.D., Wang, X., Kono, J., et al.: Cooperative Recombination of a Quantized High-Density Electron-Hole Plasma in Semiconductor Quantum Wells. Phys. Rev. Lett. 96, 237401 (2006)

    Google Scholar 

  22. Jho, Y.D., Wang, X., Reitze, D.H., et al.: Cooperative recombination of electron-hole pairs in semiconductor quantum wells under quantizing magnetic fields. Phys. Rev. B 81, 155314 (2010)

    Google Scholar 

  23. Kalinin, P.A., Kocharovsky, V.V., Kocharovsky, Vl.V.: Conditions and features of the lasing in traps for the bose condensation of dipolar excitons. Radiophys. Quantum Electron. 54, 316–333 (2011)

    Google Scholar 

  24. Kalinin, P.A., Kocharovsky, V.V., Kocharovsky, Vl.V.: On the problem of lasing in traps for the bose condensation of dipolar excitons. Semiconductors 46, 1351–1357 (2012)

    Google Scholar 

  25. Kalinin, P.A., Kocharovsky, V.V., Kocharovsky, Vl.V.: lasing in traps for the bose condensation of dipolar excitons. Solid St. Comm. 152, 1008–1011 (2012)

    Google Scholar 

  26. Keeling, J., Bhaseen, M.J., Simons, B.D.: Phys. Rev. Lett. 105, 043001 (2010)

    Google Scholar 

  27. Keeling, J., Marchetti, F.M., Szymanska, M.H., et al.: Collective coherence in planar semiconductor microcavities. Semicond. Sci. Technol. 22, R1 (2007)

    Google Scholar 

  28. Khanin, Ya.I. Fundamentals of Laser Dynamics, 1st edn. Cambridge International Science Publishing, Cambridge, (2006), Chapters 1, 3, 4, 7

    Google Scholar 

  29. Kim, J.-H., NoeII, G.T., McGill, S.A., et al.: Fermi-edge superfluorescence from a quantumdegenerate electron-hole gas. Sci. Rep. 3, 3283 (2013)

    Google Scholar 

  30. Kocharovsky, V.V., Kocharovsky, Vl.V., Golubyatnikova, E.R.: Mode Instability and Nonlinear Superradiance Phenomena in Open Fabry-Perot Cavity. Comput. Math. Appl. 34, 773 (1997)

    Google Scholar 

  31. Kocharovsky, Vl.V., Kalinin, P.A., Kocharovskaya, E.R., et al.: Nonlinear Waves 2012. IAP RAS, Nizhny Novgorod, pp. 398–428. (2013) (in Russian) (ed. by A. Litvak)

    Google Scholar 

  32. Lanzani, G.: The Photophysics Behind Photovoltaics and Photonics, 1st edn. Wiley, NewYork (2012), Chapter 3

    Book  Google Scholar 

  33. Lozovik, Yu.E.: Strong correlations and new phases in a system of excitons and polaritons. A polariton laser. Phys. Usp. 52, 286 (2009)

    Google Scholar 

  34. Majumder, F.A., Kalt, H., Klingshirn, C., et al.: Carrier dynamics and lasing in epitaxial ZnTe layers on GaAs. Phys. Stat. Sol. B. 188, 191–198 (1995)

    Google Scholar 

  35. Malcuit, M.S., Maki, J.J., Simkin, D.J., Boyd, R.W.: Transition from Superfluorescence to Amplified Spontaneous Emission. Phys. Rev. Lett. 59, 1189 (1987)

    Google Scholar 

  36. Meinardi, F., Cerminara, M., Sassella, A., et al.: Superradiance in molecular H aggregates. Phys. Rev. Lett. 91, 247401 (2003)

    Google Scholar 

  37. Meiser, D., Ye, J., Carlson, D.R., et al.: Prospects for a Millihertz-Linewidth Laser. Phys. Rev. Lett. 102, 163601 (2009)

    Google Scholar 

  38. Meiser, D., Holland, M.J.: Intensity fluctuations in steady-state superradiance. Phys. Rev. A 81, 063827 (2010)

    Google Scholar 

  39. Monmayrant, A., Weber, S., Chatel, B., et al.: A newcomer's guide to ultrashort pulse shaping and characterization. J. Phys. B At. Mol. Opt. Phys. 43, 103001 (2010)

    Google Scholar 

  40. Noginov, M.A., Zhu, G., Fowlkes, I., Bahoura, M.: GaAs random laser. Laser Phys. Lett. 1, 291 (2004)

    Google Scholar 

  41. Olle, V.F., Vasil’ev, P.P., Wonfor, A., et al.: Ultrashort superradiant pulse generation from a GaN/InGaN heterostructure. Opt. Express 20(7), 7035 (2012)

    Google Scholar 

  42. Slama, S., Krenz, G., Bux, S., et al.: Controlling mode locking in optical ring cavities. Phys. Rev. A 75, 063620 (2007)

    Google Scholar 

  43. Timofeev, V.A., Gorbunov, A.V., Larionov, A.V.: Long-range coherence of interacting Bose gas of dipolar excitons. J. Phys. Cond. Mat. 19, 29520–9 (2007)

    Google Scholar 

  44. Ting, D.Z.-Y., Bandara, S.V., Gunapala, S.D.: Submonolayer quantum dot infrared photodetector. Appl. Phys. Lett. 94, 111107 (2009)

    Google Scholar 

  45. Weiner, A.M.: Fourier information optics for the ultrafast time domain. Appl. Opt. 47, A88 (2008)

    Google Scholar 

  46. Wiersma, D.S., Noginov, M.A.: Nano and random lasers. J. Opt. 12, 020201 (2010)

    Google Scholar 

  47. Zheleznyakov, V.V., Kocharovskii, V.V., Kocharovskii, V.V.: Polarization waves and super-radiance in active media. Sov. Phys. Usp. 32, 835–870 (1989)

    Google Scholar 

Download references

Acknowledgements

The research was partially supported by the Russian Foundation for Basic Research 12-02-00855, program of Fundamental Research of the Presidium of the RAS No. 24, programs of Fundamental Research of the department of physical sciences of RAS No. III.7 and IV.12, the NSF Grant EEC-0540832 (MIRTHE ERC), and Council on grants of the President of the Russian Federation for support of the leading scientific schools of the Russian Federation (grant HIII-1041.2014.2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vl. V. Kocharovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kocharovsky, V., Belyanin, A., Kocharovskaya, E., Kocharovsky, V. (2015). Superradiant Lasing and Collective Dynamics of Active Centers with Polarization Lifetime Exceeding Photon Lifetime. In: Shulika, O., Sukhoivanov, I. (eds) Advanced Lasers. Springer Series in Optical Sciences, vol 193. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9481-7_4

Download citation

Publish with us

Policies and ethics