Skip to main content

Antireflective Nanostructures for Solar Cells

  • Chapter
  • First Online:
The Current Trends of Optics and Photonics

Part of the book series: Topics in Applied Physics ((TAP,volume 129))

  • 4248 Accesses

Abstract

Photon management is a technique to precisely control and enhance the light at the active layer via increasing light-matter interaction, which can significantly enhance the efficiency of solar cells. Recently, much effort has been devoted to nanostructures applied to solar cells due to their nanoscaled dimension and unique architectures. The nanostructures show interesting interaction with light, which substantially differ from that of bulk materials, because their dimension is comparable with the incident wavelength. It has been reported that controlling light using nanostructures theoretically allows the solar cells to achieve an efficiency to 50–70 %, breaking Shockley-Queisser limit (Polman and Atwater in Nat Mater 11:174–177, 2012 [1]). Moreover, the radial p-n junction design of nanostructures allows photocarriers easily diffuse to the p-n junction interface along the radial direction and be effectively extracted. Therefore, employment of nanostructures provides intriguing potential not only in optical but also in electrical enhancements for solar cells applications. Here, we discussed recent progress in antireflection (AR) nanostructures for solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

n eff :

Effective refractive index

n 0 :

Refractive indices of air

n s :

Refractive indices of substrate

n i :

Refractive indices of intermediate films

R:

Reflectance

ARC:

Antireflection coating

AOI:

Angle of incident

EMT:

Effective medium theory

References

  1. A. Polman, H.A. Atwater, Photonic design principles for ultrahigh-efficiency photovoltaics. Nat. Mater. 11, 174–177 (2012)

    Article  ADS  Google Scholar 

  2. L. Rayleigh, On reflection of vibrations at the confines of two media between which the transition is gradual. Proc. London Math Soc. s1, 51–56 (1879)

    Google Scholar 

  3. J. Fraunhofer, Joseph von Fraunhofer Gesannekte Schriften (Munich, Germany, 1888)

    Google Scholar 

  4. H.K. Raut, V.A. Ganesh, A.S. Nair, S. Ramakrishna, Anti-reflective coatings: A critical, in-depth review. Energy Environ. Sci. 4, 3779–3804 (2011)

    Article  Google Scholar 

  5. E. Hecht, Optics, 4th edn. (Addison-Wesley, New York, 2001)

    Google Scholar 

  6. C.G. Someda, Electromagnetic Waves (Chapman & Hall, London, 1998)

    Google Scholar 

  7. I.G. Kavakli, K. Kantarli, Single and double-layer antireflection coatings on silicon. Turk. J. Phys. 26, 349–354 (2002)

    Google Scholar 

  8. J.Q. Xi, M.F. Schubert, J.K. Kim, E.F. Schubert, M. Chen, S.-Y. Lin, W. Liu, J.A. Smart, Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection. Nat. Photon 1, 176–179 (2007)

    ADS  Google Scholar 

  9. J.C.M. Garnett, Colours in metal glasses and in metallic films. Phil. Trans. R. Soc. A 203, 385–420 (1904)

    Article  ADS  MATH  Google Scholar 

  10. J.C.M. Garnett, Colours in metal glasses, in metallic films, and in metallic solutions. II. Phil. Trans. R. Soc. A 205, 237–288 (1906)

    Article  ADS  Google Scholar 

  11. D.A.G. Bruggeman, Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys. 416, 636–664 (1935)

    Article  Google Scholar 

  12. H.P. Wang, K.Y. Lai, Y.R. Lin, C.A. Lin, J.H. He, Periodic Si nanopillar arrays fabricated by colloidal lithography and catalytic etching for broadband and omnidirectional elimination of Fresnel reflection. Langmuir 26, 12855–12858 (2010)

    Article  Google Scholar 

  13. Z. Fan, R. Kapadia, P.W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A.A. Rathore, D.J. Ruebusch, M. Wu, A. Javey, Ordered arrays of dual-diameter nanopillars for maximized optical absorption. Nano Lett. 10, 3823–3827 (2010)

    Article  ADS  Google Scholar 

  14. L.K. Yeh, K.Y. Lai, G.J. Lin, P.H. Fu, H.C. Chang, C.A. Lin, J.H. He, Giant efficiency enhancement of GaAs solar cells with graded antireflection layers based on syringelike ZnO nanorod arrays. Adv. Energy Mater. 1, 505 (2011)

    Article  Google Scholar 

  15. Y.C. Chao, C.Y. Chen, C.A. Lin, J.H. He, Light scattering by nanostructured anti-reflection coatings. Energy Environ. Sci. 4, 3436–3441 (2011)

    Article  Google Scholar 

  16. H.C. Chang, K.Y. Lai, Y.A. Dai, H.H. Wang, C.A. Lin, J.H. He, Nanowire arrays with controlled structure profiles for maximizing optical collection efficiency. Energy Environ. Sci. 4, 2863–2869 (2011)

    Article  Google Scholar 

  17. C.A. Lin, K.Y. Lai, W.C. Lien, J.H. He, An efficient broadband and omnidirectional light-harvesting scheme employing a hierarchical structure based on a ZnO nanorod/Si3N4-coated Si microgroove on 5-inch single crystalline Si solar cells. Nanoscale 4, 6520–6526 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jr-Hau He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wang, HP., He, JH., Chang, HC. (2015). Antireflective Nanostructures for Solar Cells. In: Lee, CC. (eds) The Current Trends of Optics and Photonics. Topics in Applied Physics, vol 129. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9392-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9392-6_23

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9391-9

  • Online ISBN: 978-94-017-9392-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics