Skip to main content

Urea Transporter Knockout Mice and Their Renal Phenotypes

  • Chapter
  • First Online:
Urea Transporters

Part of the book series: Subcellular Biochemistry ((SCBI,volume 73))

Abstract

Urea transporter gene knockout mice have been created for the study of the urine-concentrating mechanism. The major findings in studies of the renal phenotype of these mice are as follows: (1) Urea accumulation in the inner medullary interstitium is dependent on intrarenal urea recycling mediated by urea transporters; (2) urea transporters are essential for preventing urea-induced osmotic diuresis and thus for water conservation; (3) NaCl concentration in the inner medullary interstitium is not significantly affected by the absence of IMCD, descending limb of Henle and descending vasa recta urea transporters. Studies in urea transporter knockout mouse models have highlighted the essential role of urea for producing maximally concentrated urine.

Baoxue Yang—Co-corresponding author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bagnasco SM, Peng T, Nakayama Y, Sands JM (2000) Differential expression of individual UT-A urea transporter isoforms in rat kidney. J Am Soc Nephrol 11:1980–1986

    CAS  PubMed  Google Scholar 

  2. Bankir L, Ahloulay M, Bouby N, Trinh-Trang-Tan MM, Machet F, Lacour B, Jungers P (1993) Is the process of urinary urea concentration responsible for a high glomerular filtration rate? Am J Soc Nephrol 4:1091–1103

    CAS  Google Scholar 

  3. Bankir L, Bouby N, Trinh-Trang-Tan MM (1991) Vasopressin-dependent kidney hypertrophy: role of urinary concentration in protein-induced hypertrophy and in the progression of chronic renal failure. Am J Kidney Dis 17:661–665

    Article  CAS  PubMed  Google Scholar 

  4. Bankir L, Chen K, Yang B (2004) Lack of UT-B in vasa recta and red blood cells prevents the urea-induced improvement in urinary concentrating ability. Am J Physiol Renal Physiol 286:F144–F151

    Article  CAS  PubMed  Google Scholar 

  5. Bankir L, Trinh-Trang-Tan MM (2000) Urea and the kidney. In: Brenner BM (ed) The kidney, 6th edn. Saunders, Philadelphia, p 637–679

    Google Scholar 

  6. Berliner RW, Bennett CM (1967) Concentration of urine in the mammalian kidney. Am J Med 42(5):777–789

    Article  CAS  PubMed  Google Scholar 

  7. Berliner RW, Levinsky NG, Davidson DG, Eden M (1958) Dilution and concentration of the urine and the action of antidiuretic hormone. Am J Med 24:730–744

    Article  CAS  PubMed  Google Scholar 

  8. Blount MA, Klein JD, Martin CF, Tchapyjnikov D, Sands JM (2007) Forskolin stimulates phosphorylation and membrane accumulation of UT-A3. Am J Physiol Renal Physiol 293:F1308–F1313

    Article  CAS  PubMed  Google Scholar 

  9. Chou CL, Sands JM, Nonoguchi H, Knepper MA (1990) Concentration dependence of urea and thiourea transport in rat inner medullary collecting duct. Am J Physiol 258(3 Pt 2):F486–F494

    CAS  PubMed  Google Scholar 

  10. Chou CL, Knepper MA (1989) Inhibition of urea transport in inner medullary collecting duct by phloretin and urea analogues. Am J Physiol 257:F359–F365

    CAS  PubMed  Google Scholar 

  11. Dicker SE (1949) Effect of the protein content of the diet on the glomerular filtration rate of young and adult rats. J Physiol 108:197–202

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Fenton RA, Chou CL, Sowersby H, Smith CP, Knepper MA (2006) Gamble’s ‘economy of water’ revisited: studies in urea transporter knockout mice. Am J Physiol Renal Physiol 291:148–154

    Article  Google Scholar 

  13. Fenton RA, Chou CL, Stewart GS, Smith CP, Knepper MA (2004) Urinary concentrating defect in mice with selective deletion of phloretin sensitive urea transporters in the renal collecting duct. Proc Natl Acad Sci USA 101:7469–7474

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Fenton RA, Cottingham CA, Stewart GS, Howorth A, Hewitt JA, Smith CP (2002) Structure and characterization of the mouse UT-A gene (Slc14a2). Am J Physiol Renal Physiol 282:F630–F638

    CAS  PubMed  Google Scholar 

  15. Fenton RA, Flynn A, Shodeinde A, Smith CP, Schnermann J, Knepper MA (2005) Renal phenotype of UT-A urea transporter knockout mice. J Am Soc Nephrol 16(6):1583–1592

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Fenton RA, Howorth A, Cooper GJ, Meccariello R, Morris ID, Smith CP (2000) Molecular characterization of a novel UT-A urea transporter isoform (UT- A5) in testis. Am J Physiol Cell Physiol 279:C1425–C1431

    CAS  PubMed  Google Scholar 

  17. Fenton RA, Stewart GS, Carpenter B, Howorth A, Potter EA, Cooper GJ, Smith CP (2002) Characterization of mouse urea transporters UT-A1 and UT-A2. Am J Physiol Renal Physiol 283:F817–F825

    Article  CAS  PubMed  Google Scholar 

  18. Froehlich O, Klein JD, Smith PM, Sands JM, Gunn RB (2006) Regulation of UT-A1-mediated transepithelial urea flux in MDCK cells. Am J Physiol Cell Physiol 291:600–606

    Article  Google Scholar 

  19. Gamble JL, Chou CL, Sowersby H, Smith CP, Knepper MA (1934) An economy of water in renal function referable to urea. Am J Physiol 109:139–154

    CAS  Google Scholar 

  20. Grantham JJ, Burg MB (1966) Effect of vasopressin and cyclic AMP on permeability of isolated collecting tubules. Am J Physiol 211:255–259

    CAS  PubMed  Google Scholar 

  21. Hu MC, Bankir L, Michelet S, Rousselet G, Trinh-Trang-Tan MM (2000) Massive reduction of urea transporters in remnant kidney and brain of uremic rats. Kidney Int 58:1202–1210

    Article  CAS  PubMed  Google Scholar 

  22. Imai M (1979) The connecting tubule: a functional subdivision of the rabbit distal nephron segments. Kidney Int 15:346–356

    Article  CAS  PubMed  Google Scholar 

  23. Jamison RL, Bennett CM, Berliner RW (1967) Countercurrent multiplication by the thin loops of Henle. Am J Physiol 212:357–366

    CAS  PubMed  Google Scholar 

  24. Knepper MA, Chou CL, Layton HE (1993) How is urine concentrated by the renal inner medulla? Contrib Nephrol 102:144–160

    CAS  PubMed  Google Scholar 

  25. Knepper MA, Saidel GM, Hascall VC, Dwyer T (2003) Concentration of solutes in the renal inner medulla: interstitial hyaluronan as a mechano-osmotic transducer. Am J Physiol Renal Physiol 284:F433–F446

    CAS  PubMed  Google Scholar 

  26. Kokko JP (1970) Sodium chloride and water transport in the descending limb of Henle. J Clin Invest 49:1838–1846

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Kokko JP, Rector FC Jr (1972) Countercurrent multiplication system without active transport in inner medulla. Kidney Int 2:214–223

    Article  CAS  PubMed  Google Scholar 

  28. Kondo Y, Abe K, Igarashi Y, Kudo K, Tada K, Yoshinaga K (1993) Direct evidence for the absence of active Na+ reabsorption in hamster ascending thin limb of Henle’s loop. J Clin Invest 91:5–11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Kriz W (1981) Structural organisation of the renal medulla: comparative and functional aspects. Am J Physiol Regul Integr Comp Physiol 241:R3–R16

    CAS  Google Scholar 

  30. Kuhn W, Ramel A (1959) Activer Salztransport als moeglicher (und wahrscheinlicher) Einzeleffekt bei der Harnkonzentrierung in der Niere. Helv Chim Acta 42:628–660

    Article  CAS  Google Scholar 

  31. Layton AT (2007) Role of UT-B urea transporters in the urine concentrating mechanism of the rat kidney. Bull Math Biol 69:887–929

    Article  CAS  PubMed  Google Scholar 

  32. Lei T, Zhou L, Layton AT, Zhou H, Zhou X, Bankir L, Yang B (2011) Role of thin descending limb urea transport in renal urea handling and the urine concentrating mechanism. Am J Physiol Renal Physiol 301:F1251–F1259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Lucien N, Sidoux-Walter F, Olivès B, Moulds J, Le Pennec PY, Cartron JP, Bailly P (1998) Characterization of the gene encoding the human Kidd blood group/urea transporter protein. Evidence for splice site mutations in Jknull individuals. J Biol Chem 273:12973–12980

    Article  CAS  PubMed  Google Scholar 

  34. Mackay EM, Mackay LL, Addis T (1928) Factors which determine renal weight. V. The protein intake. Am J Physiol 86:459–465

    CAS  Google Scholar 

  35. Nakayama Y, Naruse M, Karakashian A, Peng T, Sands JM, Bagnasco SM (2001) Cloning of the rat Slc14a2 gene and genomic organization of the UT-A urea transporter. Biochim Biophys Acta 1518:19–26

    Article  CAS  PubMed  Google Scholar 

  36. Nielsen S, Terris J, Smith CP, Hediger MA, Ecelbarger CA, Knepper MA (1996) Cellular and subcellular localization of the vasopressin-regulated urea transporter in rat kidney. Proc Natl Acad Sci USA 93:5495–5500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Olives B, Neau P, Bailly P, Hediger MA, Rousselet G, Cartron JP, Ripoche P (1994) Cloning and functional expression of a urea transporter from human bone marrow cells. J Biol Chem 269:31649–31652

    CAS  PubMed  Google Scholar 

  38. Potter EA, Stewert G, Smith CP (2006) Urea flux across MDCK-mUT-A2 monolayers is acutely sensitive to AVP, cAMP and [Ca2 +]i. Am J Physiol Renal Physiol 291:F122–F128

    Article  CAS  PubMed  Google Scholar 

  39. Promeneur D, Rousselet G, Bankir L, Bailly P, Cartron JP, Ripoche P, Trinh-Trang-Tan MM (1996) Evidence for distinct vascular and tubular urea transporters in the rat kidney. Am J Soc Nephrol 7:852–860

    CAS  Google Scholar 

  40. Sands JM (2003) Mammalian urea transporters. Annu Rev Physiol 65:543–566

    Article  CAS  PubMed  Google Scholar 

  41. Sands JM, Knepper MA (1987) Urea permeability of mammalian inner medullary collecting duct system and papillary surface epithelium. J Clin Invest 79(1):138–147

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Sands JM, Nonoguchi H, Knepper MA (1987) Vasopressin effects on urea and H2O transport in inner medullary collecting duct subsegments. Am J Physiol 253:F823–F832

    CAS  PubMed  Google Scholar 

  43. Seney FD Jr, Persson EG, Wright FS (1987) Modification of tubuloglomerular feedback signal by dietary protein. Am J Physiol 252(1 Pt 2):F83–F90

    PubMed  Google Scholar 

  44. Seney FD Jr, Wright FS (1985) Dietary protein suppresses feedback control of glomerular filtration in rats. J Clin Invest 75:558–568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Shannon JA (1936) Glomerular filtration and urea excretion in relation to urine flow in the dog. Am J Physiol 117:206–225

    CAS  Google Scholar 

  46. Shannon JA (1938) Urea excretion in the normal dog during forced diuresis. Am J Physiol 122:782–787

    CAS  Google Scholar 

  47. Smith CP, Lee WS, Martial S, Knepper MA, You G, Sands JM, Hediger MA (1995) Cloning and regulation of expression of the rat kidney urea transporter (rUT2). J Clin Invest 96:1556–1563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Smith CP, Potter EA, Fenton RA, Stewart GS (2004) Characterization of a human colonic cDNA encoding a structurally novel urea transporter, hUT-A6. Am J Physiol Cell Physiol 287:C1087–C1093

    Article  CAS  PubMed  Google Scholar 

  49. Stephenson JL (1972) Concentration of urine in a central core model of the renal counterflow system. Kidney Int 2:85–94

    Article  CAS  PubMed  Google Scholar 

  50. Stewart GS, Fenton RA, Wang W, Kwon TH, White SJ, Collins VM, Cooper G, Nielsen S, Smith CP (2004) The basolateral expression of mUT-A3 in the mouse kidney. Am J Physiol Renal Physiol 286:F979–F987

    Article  CAS  PubMed  Google Scholar 

  51. Thomas SR (2000) Inner medullary lactate production and accumulation: a vasa recta model. Am J Physiol Renal Physiol 279:F468–F481

    CAS  PubMed  Google Scholar 

  52. Timmer RT, Klein JD, Bagnasco SM, Doran JJ, Verlander JW, Gunn RB, Sands JM (2001) Localization of the urea transporter UT-B protein in human and rat erythrocytes and tissues. Am J Physiol Cell Physiol 281:C1318–C1325

    CAS  PubMed  Google Scholar 

  53. Trinh-Trang-Tan MM, Lasbennes F, Gane P, Roudier N, Ripoche P, Cartron JP, Bailly P (2002) UT-B1 proteins in rat: tissue distribution and regulation by antidiuretic hormone in kidney. Am J Physiol Renal Physiol 283:F912–F922

    PubMed  Google Scholar 

  54. Uchida S, Sohara E, Rai T, Ikawa M, Okabe M, Sasaki S (2005) Impaired urea accumulation in the inner medulla of mice lacking the urea transporter UT-A2. Mol Cell Biol 25:7357–7363

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Wade JB, Lee AJ, Liu J, Ecelbarger CA, Mitchell C, Bradford AD, Terris J, Kim GH, Knepper MA (2000) UT-A2: a 55-kDa urea transporter in thin descending limb whose abundance is regulated by vasopressin. Am J Physiol Renal Physiol 278:F52–F62

    CAS  PubMed  Google Scholar 

  56. Xu Y, Olives B, Bailly P, Ripoche P, Fisher E, Ronco P, Cartron JP, Rondeau E (1997) Endothelial cells of the kidney vasa recta express the urea transporter HUT11. Kidney Int 51:138–146

    Article  CAS  PubMed  Google Scholar 

  57. Yang B, Bankir L, Gillespie A, Epstein CJ, Verkman AS (2002) Urea-selective concentrating defect in transgenic mice lacking urea transporter UT-B. J Biol Chem 277:10633–10637

    Article  CAS  PubMed  Google Scholar 

  58. Yang B, Bankir L (2005) Urea and urine concentrating ability: new insights from studies on mice. Am J Physiol Renal Physiol 288:F881–F896

    Article  CAS  PubMed  Google Scholar 

  59. You G, Smith CP, Kanai Y, Lee WS, Stelzner M, Hediger MA (1993) Cloning and characterization of the vasopressin-regulated urea transporter. Nature 365:844–847

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research in the author’s laboratory is supported by the Danish Medical Research Council, the Lundbeck Foundation, the Novo Nordisk Foundation, the Aarhus University Research Foundation, and the Carlsberg Foundation (RAF); and National Natural Science Foundation of China grants 30500171, 30870921, 31200869, 81261160507, and 81170632, Drug Discovery Program grant 2009ZX09301-010-30, the Research Fund for the Doctoral Program of Higher Education 20100001110047, and the 111 project, International Science and Technology Cooperation Program of China 2012DFA11070 (BY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Fenton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fenton, R.A., Yang, B. (2014). Urea Transporter Knockout Mice and Their Renal Phenotypes. In: Yang, B., Sands, J. (eds) Urea Transporters. Subcellular Biochemistry, vol 73. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9343-8_9

Download citation

Publish with us

Policies and ethics