Skip to main content

Piezoelectricity and Energy Harvester Modelling

  • Chapter
  • First Online:
CMOS Circuits for Piezoelectric Energy Harvesters

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 38))

Abstract

The direct piezoelectric effect is well-suited for harnessing environmental vibrations and to convert them into usable electrical energy. Coated on a cantilever beam, piezoelectric ceramics allows simple energy harvesting without additional mechanical structures. In addition, relatively small external excitations result in output voltages of several volts which do not require low-efficient startup mechanisms as known from thermoelectric generators. In order to give the reader a feeling about what is important for developing interface circuitry for piezoelectric energy harvesters, the basics of piezoelectricity and its usage in energy harevsting are presented in this chapter. After the physical conversion principle has been introduced roughly, its application in cantilever beam harvesters is explained. The last two sections are about the modeling of kinetic, vibration based energy harvesters in general and piezoelectric energy harvesters in particular. Electrical equivalent circuits of the energy harvesters are essential for the simulation of entire energy harvesting systems composed of the mechanical harvester structure and the electrical interface circuitry on one hand, and on the other hand to understand their behavior by means of analytical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Ajitsaria, S.Y. Choe, D. Shen, D.J. Kim, Modeling and analysis of a bi-morph piezoelectric cantilever beam for voltage generation. Smart Mater. Struct. 16, 447–454 (2007)

    Article  ADS  Google Scholar 

  2. D. Damjanovic, Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 61, 1267 (1998)

    Article  ADS  Google Scholar 

  3. R. D’hulst, in Power processing circuits for vibration-based energy Har- vesters. Ph.D. thesis, KU Leuven 2009

    Google Scholar 

  4. N.E. DuToit, B.L. Wardle, Experimental verification of models for microfabricated piezoelectric vibration energy harvesters. AIAA J. 45(5), 1126–1137 (2007)

    Article  ADS  Google Scholar 

  5. G. Gautschi, in Piezoelectric Sensorics: Force, Strain, Pressure, Accelera- tion and Acoustic Emission Sensors, Materials and Amplifiers (Springer Verlag, 2002)

    Google Scholar 

  6. D. Guyomar, A. Badel, E. Lefeuvre, C. Richard, Toward energy harvest- ing using active materials and conversion improvement by nonlinear process- ing. IEEE Trans. Ultrason., Ferroelectrics Freq. Control 52(4), 584–595 (2005)

    Article  Google Scholar 

  7. B. Jaffe, in Piezoelectric Ceramics. (Academic Press, Waltham, 1971)

    Google Scholar 

  8. A. Kasyap , J. Lim, D. Johnson , S. Horowitz, T. Nishida, K. Ngo, M. Sheplak , L. Cattafesta, in Energy Reclamation from a Vibrating Piezoceramic Com- posite Beam, in Proceedings of 9th International Congress on Sound and Vibration, Orlando, FL, USA, vol 9, 8–11 July 2002, pp. 36–43

    Google Scholar 

  9. T. Kazmierski, in Energy Harvesting Systems: principles, Modeling and Applications. (Springer Verlag 2010)

    Google Scholar 

  10. N. Kong, D.S. Ha, A. Erturk, D.J. Inman, Resistive impedance matching circuit for piezoelectric energy harvesting. J. Intell. Mater. Syst. Struct. 21(13), 1293–1302 (2010)

    Article  Google Scholar 

  11. K. Kundert, in The Designer’s Guide to SPICE and SPECTRE. (Kluwer Academic Publishers 1995)

    Google Scholar 

  12. G. Lippmann, in Principe de la conservation de l’électricité, ou second principe de la théorie des phènomènes électriques. Annales de Chimie et de Physique 24, 145 (1881)

    Google Scholar 

  13. A.H. Meitzler, H.F. Tiersten, A.W. Warner, D. Berlincourt, G.A. Couqin, F.S. Welsh III, IEEE Standard on Piezoelectricity. Institute of Electrical and Elec- tronics Engineers (IEEE), New York (1988)

    Google Scholar 

  14. P.D. Mitcheson, T.C. Green, E.M. Yeatman, A.S. Holmes, Architectures for vibration-driven micropower generators. J Microelectromech Syst 13(3), 429–440 (2004)

    Article  Google Scholar 

  15. M. Renaud, T. Sterken, A. Schmitz, P. Fiorini, C. Van Hoof, R. Puers, in Piezoelectric Harvesters and MEMS Technology: Fabrication, Modeling and Measurements, in Proceedings of the International Conference on Solid- State Sensors, Actuators and Microsystems (Transducers), Lyon, France, 10–14 June 2007, pp. 891–894

    Google Scholar 

  16. M. Renaud, K. Karakaya, T. Sterken, P. Fiorini, C. Van Hoof, R. Puers, Fabrication, modelling and characterization of MEMS piezoelectric vibration harvesters. Sens. Actuators A: Phys. 145, 380–386 (2008)

    Article  Google Scholar 

  17. S. Roundy, P. Wright, J. Rabaey, in Energy scavenging for wireless sensor networks: with special focus on vibrations. (Kluwer Academic Publishers 2004))

    Google Scholar 

  18. Y.C. Shu, I.C. Lien, Analysis of power output for piezoelectric energy harvesting systems. Smart Mater. Struct. 15, 1499 (2006)

    Google Scholar 

  19. H.A.C. Tilmans, Equivalent circuit representation of electromechanical transducers: I. Lumped-parameter systems. J. Micromech. Microeng. 6, 157 (1996)

    Article  ADS  Google Scholar 

  20. P.W. Tuinenga, in SPICE: a guide to circuit simulation and analysis using PSpice. (Prentice Hall PTR 1995)

    Google Scholar 

  21. C.B. Williams, R.B. Yates, Analysis of a micro-electric generator for microsystems. Sens. Actuators A: Phys. 52(1–3), 8–11 (1996)

    Article  Google Scholar 

  22. Y. Xu, X. Yuhuan, Ferroelectric Materials Applications (North- Holland Elsevier, Netherlands, 1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Hehn .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hehn, T., Manoli, Y. (2015). Piezoelectricity and Energy Harvester Modelling. In: CMOS Circuits for Piezoelectric Energy Harvesters. Springer Series in Advanced Microelectronics, vol 38. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9288-2_2

Download citation

Publish with us

Policies and ethics