Skip to main content

Clinical Bioinformatics: A New Emerging Science of Biomarker Development

  • Chapter
  • First Online:
Genomics and Proteomics for Clinical Discovery and Development

Part of the book series: Translational Bioinformatics ((TRBIO,volume 6))

Abstract

Cancer has become the leading cause of death in the last 50 years. Patients with early detection of cancer have better rate of the recovery and survival than patients with more advanced cancer. More than 90 % 5-year survival rate was found to associated with the detection of cancers at the stage one (Etzioni et al. 2003), which need cancer-specific and sensitive biomarkers to diagnose and monitor timely therapeutic interventions (Ullah and Aatif 2009). US Food and Drug Administration has approved a few biomarkers for early detection or screening of cancers, like prostate-specific antigen for prostate cancer, nuclear matrix protein 22 for bladder cancer, etc. Biomarkers can play roles before cancer diagnosis in risk assessment and screening, at diagnosis in classification, stage and grade, and after diagnosis in predicting response to therapy and toxicity related to treatment, selecting additional therapy and detecting recurrence (Fig. 9.1) (Ludwig and Weinstein 2005). Predictive biomarkers allow clinicians to assess clinical effects of chemotherapy and molecular targeted agents on response rate and survival time (Saijo 2012). The patients with poor responses have severe toxicities of chemotherapy or high prices of targeted drugs, if they did not have a reliable biomarker. Massive efforts have been carried out to identify such predictive biomarkers, of which some have been used in clinical trials. For example, somatic mutations in the tyrosine kinase domain of the epidermal growth factor receptor (EGFR) were shown to be a predictive marker for better efficacy of Gefitinib in patients with non small cell lung cancer (Lynch et al. 2004; Paez et al. 2004). Decisions in breast cancer are based on tumor size, node status, histological grade, age, estrogen receptor status, and EGF receptor 2 (HER2) status, of which two receptors have been considered as more important markers for the malignancy (Roukos 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agouridakis P, Kyriakou D, Alexandrakis MG, Prekates A, Perisinakis K, Karkavitsas N, Bouros D. The predictive role of serum and bronchoalveolar lavage cytokines and adhesion molecules for acute respiratory distress syndrome development and outcome. Respir Res. 2002;3:25.

    Article  PubMed Central  PubMed  Google Scholar 

  • Aldridge BB, Burke JM, Lauffenburger DA, Sorger PK. Physicochemical modelling of cell signalling pathways. Nat Cell Biol. 2006;8:1195–203.

    Article  CAS  PubMed  Google Scholar 

  • American Cancer Society. Cancer statistics, 2005. www.cancer.org

  • Barabasi AL, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nat Rev Genet. 2004;5:101–13.

    Article  CAS  PubMed  Google Scholar 

  • Barabasi AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet. 2011;12:56–68.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baranzini SE. Systems-based medicine approaches to understand and treat complex diseases. The example of multiple sclerosis. Autoimmunity. 2006;39:651–62.

    Article  PubMed  Google Scholar 

  • Baumgartner C, Osl M, Netzer M, Baumgartner D. Bioinformatic-driven search for metabolic biomarkers in disease. J Clin Bioinform. 2011;1:2.

    Article  CAS  Google Scholar 

  • Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69:89–95.

    Article  Google Scholar 

  • Calfee CS, Ware LB, Eisner MD, Parsons PE, Thompson BT, Wickersham N, Matthay MA. Plasma receptor for advanced glycation end products and clinical outcomes in acute lung injury. Thorax. 2008;63:1083–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Celli BR, Cote CG, Marin JM, Casanova C, Montes DOM, Mendez RA, Pinto PV, Cabral HJ. The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. N Engl J Med. 2004;350:1005–12.

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Song Z, Qian M, Bai C, Wang X. Selection of disease-specific biomarkers by integrating inflammatory mediators with clinical informatics in AECOPD patients: a preliminary study. J Cell Mol Med. 2012a;16:1286–97.

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Wang Y, Bai C, Wang X. Alterations of plasma inflammatory biomarkers in the healthy and chronic obstructive pulmonary disease patients with or without acute exacerbation. J Proteomics. 2012b;75:2835–43.

    Article  CAS  PubMed  Google Scholar 

  • Cho CR, Labow M, Reinhardt M, van Oostrum J, Peitsch MC. The application of systems biology to drug discovery. Curr Opin Chem Biol. 2006;10:294–302.

    Article  CAS  PubMed  Google Scholar 

  • Cooke CR, Shah CV, Gallop R, Bellamy S, Ancukiewicz M, Eisner MD, Lanken PN, Localio AR, Christie JD. A simple clinical predictive index for objective estimates of mortality in acute lung injury. Crit Care Med. 2009;37:1913–20.

    Article  PubMed Central  PubMed  Google Scholar 

  • Danesh J, Wheeler JG, Hirschfield GM, Eda S, Eiriksdottir G, Rumley A, Lowe GD, Pepys MB, Gudnason V. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med. 2004;350:1387–97.

    Article  CAS  PubMed  Google Scholar 

  • Deng X, Geng H, Ali HH. Cross-platform analysis of cancer biomarkers: a Bayesian network approach to incorporating mass spectrometry and microarray data. Cancer Inform. 2007;3:183–202.

    PubMed Central  PubMed  Google Scholar 

  • Denis N. The music of life: biology beyond the genome. Oxford: Oxford University Press; 2006. p. 176.

    Google Scholar 

  • Eisner MD, Parsons P, Matthay MA, Ware L, Greene K. Plasma surfactant protein levels and clinical outcomes in patients with acute lung injury. Thorax. 2003;58:983–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Etzioni R, Urban N, Ramsey S, McIntosh M, Schwartz S, Reid B, Radich J, Anderson G, Hartwell L. The case for early detection. Nat Rev Cancer. 2003;3:243–52.

    Article  CAS  PubMed  Google Scholar 

  • Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952;117:500–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hogeweg P, Hesper B. Interactive instruction on population interactions. Comput Biol Med. 1978;8:319–27.

    Article  CAS  PubMed  Google Scholar 

  • Ioannidis JP, Panagiotou OA. Comparison of effect sizes associated with biomarkers reported in highly cited individual articles and in subsequent meta-analyses. JAMA. 2011;305:2200–10.

    Article  CAS  PubMed  Google Scholar 

  • Ioannidis JP, Allison DB, Ball CA, Coulibaly I, Cui X, Culhane AC, Falchi M, Furlanello C, Game L, Jurman G, et al. Repeatability of published microarray gene expression analyses. Nat Genet. 2009;41:149–55.

    Article  CAS  PubMed  Google Scholar 

  • Jin G, Zhou X, Wang H, Zhao H, Cui K, Zhang XS, Chen L, Hazen SL, Li K, Wong ST. The knowledge-integrated network biomarkers discovery for major adverse cardiac events. J Proteome Res. 2008;7:4013–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jin G, Zhou X, Cui K, Zhang XS, Chen L, Wong ST. Cross-platform method for identifying candidate network biomarkers for prostate cancer. IET Syst Biol. 2009;3:505–12.

    Article  CAS  PubMed  Google Scholar 

  • Kiehl MG, Ostermann H, Thomas M, Muller C, Cassens U, Kienast J. Inflammatory mediators in bronchoalveolar lavage fluid and plasma in leukocytopenic patients with septic shock-induced acute respiratory distress syndrome. Crit Care Med. 1998;26:1194–9.

    Article  CAS  PubMed  Google Scholar 

  • Kitano H. Systems biology: a brief overview. Science. 2002;295:1662–4.

    Article  CAS  PubMed  Google Scholar 

  • Kreeger PK, Lauffenburger DA. Cancer systems biology: a network modeling perspective. Carcinogenesis. 2010;31:2–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lau AT, Chiu JF. Biomarkers of lung-related diseases: current knowledge by proteomic approaches. J Cell Physiol. 2009;221:535–43.

    Article  CAS  PubMed  Google Scholar 

  • Laubenbacher R, Hower V, Jarrah A, Torti SV, Shulaev V, Mendes P, Torti FM, Akman S. A systems biology view of cancer. Biochim Biophys Acta. 2009;1796:129–39.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA. 1993;270:2957–63.

    Article  PubMed  Google Scholar 

  • Lemeshow S, Teres D, Klar J, Avrunin JS, Gehlbach SH, Rapoport J. Mortality Probability Models (MPM II) based on an international cohort of intensive care unit patients. JAMA. 1993;270:2478–86.

    Article  CAS  PubMed  Google Scholar 

  • Ludwig JA, Weinstein JN. Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer. 2005;5:845–56.

    Article  CAS  PubMed  Google Scholar 

  • Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350:2129–39.

    Article  CAS  PubMed  Google Scholar 

  • Mesarovic M. Systems theory and biology. Berlin: Springer; 1968.

    Book  Google Scholar 

  • Nibbe RK, Koyuturk M, Chance MR. An integrative -omics approach to identify functional sub-networks in human colorectal cancer. PLoS Comput Biol. 2010;6:e1000639.

    Article  PubMed Central  PubMed  Google Scholar 

  • Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304:1497–500.

    Article  CAS  PubMed  Google Scholar 

  • Papin JA, Hunter T, Palsson BO, Subramaniam S. Reconstruction of cellular signalling networks and analysis of their properties. Nat Rev Mol Cell Biol. 2005;6:99–111.

    Article  CAS  PubMed  Google Scholar 

  • Parsons PE, Matthay MA, Ware LB, Eisner MD. Elevated plasma levels of soluble TNF receptors are associated with morbidity and mortality in patients with acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2005;288:L426–31.

    Article  CAS  PubMed  Google Scholar 

  • Roukos DH. Novel clinico-genome network modeling for revolutionizing genotype-phenotype-based personalized cancer care. Expert Rev Mol Diagn. 2010;10:33–48.

    Article  CAS  PubMed  Google Scholar 

  • Saijo N. Critical comments for roles of biomarkers in the diagnosis and treatment of cancer. Cancer Treat Rev. 2012;38:63–7.

    Article  CAS  PubMed  Google Scholar 

  • Simon R. Development and validation of therapeutically relevant multi-gene biomarker classifiers. J Natl Cancer Inst. 2005;97:866–7.

    Article  CAS  PubMed  Google Scholar 

  • Spencer SJ, Bonnin DA, Deasy JO, Bradley JD, El NI. Bioinformatics methods for learning radiation-induced lung inflammation from heterogeneous retrospective and prospective data. J Biomed Biotechnol. 2009;2009:892863.

    PubMed Central  PubMed  Google Scholar 

  • Trewavas A. A brief history of systems biology. “Every object that biology studies is a system of systems.” Francois Jacob (1974). Plant Cell. 2006;18:2420–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tumani H, Hartung HP, Hemmer B, Teunissen C, Deisenhammer F, Giovannoni G, Zettl UK. Cerebrospinal fluid biomarkers in multiple sclerosis. Neurobiol Dis. 2009;35:117–27.

    Article  CAS  PubMed  Google Scholar 

  • Ullah MF, Aatif M. The footprints of cancer development: cancer biomarkers. Cancer Treat Rev. 2009;35:193–200.

    Article  PubMed  Google Scholar 

  • Vilar S, Gonzalez-Diaz H, Santana L, Uriarte E. A network-QSAR model for prediction of genetic-component biomarkers in human colorectal cancer. J Theor Biol. 2009;261:449–58.

    Article  CAS  PubMed  Google Scholar 

  • Wang X. Role of clinical bioinformatics in the development of network-based biomarkers. J Clin Bioinform. 2011;1:28.

    Article  Google Scholar 

  • Wang YC, Chen BS. A network-based biomarker approach for molecular investigation and diagnosis of lung cancer. BMC Med Genomics. 2011;4:2.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang X, Liotta L. Clinical bioinformatics: a new emerging science. J Clin Bioinform. 2011;1:1.

    Article  Google Scholar 

  • Wang X, Adler KB, Chaudry IH, Ward PA. Better understanding of organ dysfunction requires proteomic involvement. J Proteome Res. 2006;5:1060–2.

    Article  PubMed  Google Scholar 

  • Wang HQ, Wong HS, Zhu H, Yip TT. A neural network-based biomarker association information extraction approach for cancer classification. J Biomed Inform. 2009;42:654–66.

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Khankhanian P, Baranzini SE, Mousavi P. iCTNet: a Cytoscape plugin to produce and analyze integrative complex traits networks. BMC Bioinform. 2011;12:380.

    Article  Google Scholar 

  • Ware LB, Koyama T, Billheimer DD, Wu W, Bernard GR, Thompson BT, Brower RG, Standiford TJ, Martin TR, Matthay MA. Prognostic and pathogenetic value of combining clinical and biochemical indices in patients with acute lung injury. Chest. 2011;137:288–96.

    Article  Google Scholar 

  • Westerhoff HV, Palsson BO. The evolution of molecular biology into systems biology. Nat Biotechnol. 2004;22:1249–52.

    Article  CAS  PubMed  Google Scholar 

  • Wiedermann FJ, Mayr AJ, Kaneider NC, Fuchs D, Mutz NJ, Schobersberger W. Alveolar granulocyte colony-stimulating factor and alpha-chemokines in relation to serum levels, pulmonary neutrophilia, and severity of lung injury in ARDS. Chest. 2004;125:212–19.

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman JE, Kramer AA, McNair DS, Malila FM, Shaffer VL. Intensive care unit length of stay: benchmarking based on Acute Physiology and Chronic Health Evaluation (APACHE) IV. Crit Care Med. 2006;34:2517–29.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhitu Zhu MD, Ph.D. or Xiangdong Wang MD, Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wu, X., Fang, X., Zhu, Z., Wang, X. (2014). Clinical Bioinformatics: A New Emerging Science of Biomarker Development. In: Marko-Varga, G. (eds) Genomics and Proteomics for Clinical Discovery and Development. Translational Bioinformatics, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9202-8_9

Download citation

Publish with us

Policies and ethics