Skip to main content

Post-translational Modifications in the Human Proteome

  • Chapter
  • First Online:
Genomics and Proteomics for Clinical Discovery and Development

Abstract

The Chromosome-Centric Human Proteome Project (C-HPP) is a global project aimed to identify at least one protein isoform encoded by the approximately 20, 300 human genes. In addition, protein post-translational modifications will be characterized, with the initial goal of detecting phosphorylation, acetylation, and glycosylation sites in each protein. In this chapter, we provide an overview of known post-translational modifications, their known biological functions, and present strategies to detect them on both a single protein and proteomic scales. In future proteomic studies, global characterization of post-translation modifications, splice variants, and variants caused by single nucleotide polymorphisms (SNPs) will be necessary to fully understand the role of proteins in human biology and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahrne E, Muller M, Lisacek F. Unrestricted identification of modified proteins using MS/MS. Proteomics. 2010;10:671–86.

    CAS  PubMed  Google Scholar 

  • Ahrne E, Nikitin F, Lisacek F, Muller M. QuickMod: a tool for open modification spectrum library searches. J Proteome Res. 2011;10:2913–21.

    CAS  PubMed  Google Scholar 

  • Albuquerque CP, Smolka MB, Payne SH, Bafna V, Eng J, Zhou H. A multidimensional chromatography technology for in-depth phosphoproteome analysis. Mol Cell Proteomics. 2008;7:1389–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alley WR, Mechref Y, Novotny MV. Characterization of glycopeptides by combining collision-induced dissociation and electron-transfer dissociation mass spectrometry data. Rapid Commun Mass Spectrom. 2009;23:161–70.

    CAS  PubMed  Google Scholar 

  • Alpert AJ. Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J Chromatogr. 1990;9:177–96.

    Google Scholar 

  • Alpert AJ. Electrostatic repulsion hydrophilic interaction chromatography for isocratic separation of charged solutes and selective isolation of phosphopeptides. Anal Chem. 2007;80:62–76.

    PubMed  Google Scholar 

  • Alpert AJ. Electrostatic repulsion hydrophilic interaction chromatography for isocratic separation of charged solutes and selective isolation of phosphopeptides. Anal Chem. 2008;80:62–76.

    CAS  PubMed  Google Scholar 

  • An HJ, Peavy TR, Hedrick JL, Lebrilla CB. Determination of N-glycosylation sites and site heterogeneity in glycoproteins. Anal Chem. 2003;75:5628–37.

    CAS  PubMed  Google Scholar 

  • Apte A, Meitei NS. Bioinformatics in glycomics: glycan characterization with mass spectrometric data using SimGlycan. Methods Mol Biol. 2010;600:269–81.

    CAS  PubMed  Google Scholar 

  • Apweiler R, Hermjakob H, Sharon N. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochimica et Biophys Acta (BBA) Gen Subj. 1999;1473:4–8.

    CAS  Google Scholar 

  • Atwood JA, Minning T, Ludolf F, Nuccio A, Weatherly DB, Alvarez-Manilla G, Tarleton R, Orlando R. Glycoproteomics of Trypanosoma cruzi trypomastigotes using subcellular fractionation, lectin affinity, and stable isotope labeling. J Proteome Res. 2006;5:3376–84.

    CAS  PubMed  Google Scholar 

  • Bachmair A, Finley D, Varshavsky A. In vivo half-life of a protein is a function of its amino-terminal residue. Science. 1986;234:179–86.

    CAS  PubMed  Google Scholar 

  • Baker PR, Medzihradszky KF, Chalkley RJ. Improving software performance for peptide electron transfer dissociation data analysis by implementation of charge state- and sequence-dependent scoring. Mol Cell Proteomics. 2010;9:1795–803.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baker PR, Trinidad JC, Chalkley RJ. Modification site localization scoring integrated into a search engine. Mol Cell Proteomics. 2011;10.

    Google Scholar 

  • Bandeira N, Tsur D, Frank A, Pevzner P. Protein identification by spectral networks analysis. Proc Natl Acad Sci U S A. 2007;104:6140–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bannister AJ, Miska EA, Görlich D, Kouzarides T. Acetylation of importin-α nuclear import factors by CBP/p300. Curr Biol. 2000;10:467–70.

    CAS  PubMed  Google Scholar 

  • Beausoleil SA, Villen J, Gerber SA, Rush J, Gygi SP. A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol. 2006;24:1285–92.

    CAS  PubMed  Google Scholar 

  • Bern M, Kil YJ, Ecker C. Byonic: advanced peptide and protein identification software. Curr Protoc Bioinformatics. 2012. Chapter 13, Unit 13 20.

    Google Scholar 

  • Boersema P, Mohammed S, Heck AR. Hydrophilic interaction liquid chromatography (HILIC) in proteomics. Anal Bioanal Chem. 2008;391:151–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bunkenborg J, Pilch BJ, Podtelejnikov AV, Wisniewski JR. Screening for N-glycosylated proteins by liquid chromatography mass spectrometry. Proteomics. 2004;4:454–65.

    CAS  PubMed  Google Scholar 

  • Camp LA, Hofmann SL. Purification and properties of a palmitoyl-protein thioesterase that cleaves palmitate from H-Ras. J Biol Chem. 1993;268:22566–74.

    CAS  PubMed  Google Scholar 

  • Camp LA, Verkruyse LA, Afendis SJ, Slaughter CA, Hofmann SL. Molecular cloning and expression of palmitoyl-protein thioesterase. J Biol Chem. 1994;269:23212–19.

    CAS  PubMed  Google Scholar 

  • ÄŒerný M, Skalák J, Cerna H, Brzobohatý B. Advances in purification and separation of posttranslationally modified proteins. J Proteomics. 2013;92:2–27.

    PubMed  Google Scholar 

  • Ceroni A, Dell A, Haslam SM. The GlycanBuilder: a fast, intuitive and flexible software tool for building and displaying glycan structures. Sour Code Biol Med. 2007;2:3.

    Google Scholar 

  • Ceroni A, Maass K, Geyer H, Geyer R, Dell A, Haslam SM. GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans. J Proteome Res. 2008;7:1650–9.

    CAS  PubMed  Google Scholar 

  • Chan LN, Hart C, Guo L, Nyberg T, Davies BS, Fong LG, Young SG, Agnew BJ, Tamanoi F. A novel approach to tag and identify geranylgeranylated proteins. Electrophoresis. 2009;30:3598–606.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chicooree N, Connolly Y, Tan CT, Malliri A, Li Y, Smith DL, Griffiths JR. Enhanced detection of ubiquitin isopeptides using reductive methylation. J Am Soc Mass Spectrom. 2013;24(3):421–30.

    Google Scholar 

  • Consortium EP. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.

    Google Scholar 

  • Cooper CA, Wilkins MR, Williams KL, Packer NH. BOLD–a biological O-linked glycan database. Electrophoresis. 1999;20:3589–98.

    CAS  PubMed  Google Scholar 

  • Cooper CA, Gasteiger E, Packer NH. GlycoMod–a software tool for determining glycosylation compositions from mass spectrometric data. Proteomics. 2001a;1:340–9.

    CAS  PubMed  Google Scholar 

  • Cooper CA, Harrison MJ, Wilkins MR, Packer NH. GlycoSuiteDB: a new curated relational database of glycoprotein glycan structures and their biological sources. Nucleic Acids Res. 2001b;29:332–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cooper CA, Joshi HJ, Harrison MJ, Wilkins MR, Packer NH. GlycoSuiteDB: a curated relational database of glycoprotein glycan structures and their biological sources. 2003 update. Nucleic Acids Res. 2003;31:511–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Craig R, Beavis RC. A method for reducing the time required to match protein sequences with tandem mass spectra. Rapid Commun Mass Spectrom. 2003;17:2310–16.

    CAS  PubMed  Google Scholar 

  • Creasy DM, Cottrell JS. Unimod: protein modifications for mass spectrometry. Proteomics. 2004;4:1534–6.

    CAS  PubMed  Google Scholar 

  • Crimmins DL, Gorka J, Thoma RS, Schwartz BD. Peptide characterization with a sulfoethyl aspartamide column. J Chromatogr. 1988;443:63–71.

    CAS  PubMed  Google Scholar 

  • Dancik V, Addona TA, Clauser KR, Vath JE, Pevzner PA. De novo peptide sequencing via tandem mass spectrometry. J Comput Biol. 1999;6:327–42.

    CAS  PubMed  Google Scholar 

  • Davies M, Smith KD, Harbin AM, Hounsell EF. High-performance liquid chromatography of oligosaccharide alditols and glycopeptides on a graphitized carbon column. J Chromatogr A. 1992;609:125–31.

    CAS  Google Scholar 

  • Davitz MA, Hom J, Schenkman S. Purification of a glycosyl-phosphatidylinositol-specific phospholipase D from human plasma. J Biol Chem. 1989;264:13760–4.

    CAS  PubMed  Google Scholar 

  • Dell A, Morris HR. Glycoprotein structure determination by mass spectrometry. Science. 2001;291:2351–6.

    CAS  PubMed  Google Scholar 

  • Dephoure N, Gould KL, Gygi SP, Kellogg DR. Mapping and analysis of phosphorylation sites: a quick guide for cell biologists. Mol Biol Cell. 2013;24:535–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Di Palma S, Hennrich ML, Heck AJR, Mohammed S. Recent advances in peptide separation by multidimensional liquid chromatography for proteome analysis. J Proteomics. 2012;75:3791–813.

    PubMed  Google Scholar 

  • Ding W, Hill JJ, Kelly J. Selective enrichment of glycopeptides from glycoprotein digests using ion-pairing normal-phase liquid chromatography. Anal Chem. 2007;79:8891–9.

    CAS  PubMed  Google Scholar 

  • Dormeyer W, Mohammed S, Breukelen BV, Krijgsveld J, Heck AJR. Targeted analysis of protein termini. J Proteome Res. 2007;6:4634–45.

    CAS  PubMed  Google Scholar 

  • Dowal L, Yang W, Freeman MR, Steen H, Flaumenhaft R. Proteomic analysis of palmitoylated platelet proteins. Blood. 2011;118:e62–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Drisdel RC, Green WN. Labeling and quantifying sites of protein palmitoylation. Biotechniques. 2004;36:276–85.

    CAS  PubMed  Google Scholar 

  • Dube DH, Bertozzi CR. Glycans in cancer and inflammation [mdash] potential for therapeutics and diagnostics. Nat Rev Drug Discov. 2005;4:477–88.

    CAS  PubMed  Google Scholar 

  • Duncan JA, Gilman AG. A cytoplasmic acyl-protein thioesterase that removes palmitate from G protein alpha subunits and p21(RAS). J Biol Chem. 1998;273:15830–7.

    CAS  PubMed  Google Scholar 

  • Eberharter A, Becker PB. Histone acetylation: a switch between repressive and permissive chromatin. EMBO Rep. 2002;3:224–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Edwards AVG, Edwards GJ, Schwämmle V, Saxtorph H, Larsen MR. Spatial and temporal effects in protein post-translational modification distributions in the developing mouse brain. J Proteome Res. 2014;13(1):260–7.

    CAS  PubMed  Google Scholar 

  • Emmer BT, Nakayasu ES, Souther C, Choi H, Sobreira TJ, Epting CL, Nesvizhskii AI, Almeida IC, Engman DM. Global analysis of protein palmitoylation in African trypanosomes. Eukaryot Cell. 2011;10:455–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eng JK, Mccormack AL, Yates JR. An approach to correlate tandem mass-spectral data of peptides with amino-acid-sequences in a protein database. J Am Soc Mass Spectrom. 1994;5:976–89.

    CAS  PubMed  Google Scholar 

  • Ethier M, Saba JA, Spearman M, Krokhin O, Butler M, Ens W, Standing KG, Perrault H. Application of the StrOligo algorithm for the automated structure assignment of complex N-linked glycans from glycoproteins using tandem mass spectrometry. Rapid Commun Mass Spectrom. 2003;17:2713–20.

    CAS  PubMed  Google Scholar 

  • Eyrich B, Sickmann A, Zahedi RP. Catch me if you can: mass spectrometry-based phosphoproteomics and quantification strategies. Proteomics. 2011;11:554–70.

    CAS  PubMed  Google Scholar 

  • Falkner JA, Falkner JW, Yocum AK, Andrews PC. A spectral clustering approach to MS/MS identification of post-translational modifications. J Proteome Res. 2008;7:4614–22.

    CAS  PubMed  Google Scholar 

  • Fan JQ, Kondo A, Kato I, Lee YC. High-performance liquid chromatography of glycopeptides and oligosaccharides on graphitized carbon columns. Anal Biochem. 1994;219:224–9.

    CAS  PubMed  Google Scholar 

  • Ferluga S, Hantgan R, Goldgur Y, Himanen JP, Nikolov DB, Debinski W. Biological and structural characterization of glycosylation on ephrin-A1, a preferred ligand for EphA2 receptor tyrosine kinase. J Biol Chem. 2013;288:18448–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fernandez-De-Cossio J, Gonzalez J, Satomi Y, Shima T, Okumura N, Besada V, Betancourt L, Padron G, Shimonishi Y, Takao T. Automated interpretation of low-energy collision-induced dissociation spectra by SeqMS, a software aid for de novo sequencing by tandem mass spectrometry. Electrophoresis. 2000;21:1694–9.

    CAS  PubMed  Google Scholar 

  • Ficarro SB, Adelmant GO, Tomar MN, Zhang Y, Cheng VJ, Marto JA. Magnetic bead processor for rapid evaluation and optimization of parameters for phosphopeptide enrichment. Anal Chem. 2009;81:4566–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frank A, Pevzner P. PepNovo: de novo peptide sequencing via probabilistic network modeling. Anal Chem. 2005;77:964–73.

    CAS  PubMed  Google Scholar 

  • Garavelli JS. The RESID database of protein modifications as a resource and annotation tool. Proteomics. 2004;4:1527–33.

    CAS  PubMed  Google Scholar 

  • Gates M, Tomer K, Deterding L. Comparison of metal and metal oxide media for phosphopeptide enrichment prior to mass spectrometric analyses. J Am Soc Mass Spectrom. 2010;21:1649–59.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gaucher SP, Cancilla MT, Phillips NJ, Gibson BW, Leary JA. Mass spectral characterization of lipooligosaccharides from Haemophilus influenzae 2019. Biochemistry. 2000;39:12406–14.

    CAS  PubMed  Google Scholar 

  • Geer LY, Markey SP, Kowalak JA, Wagner L, Xu M, Maynard DM, Yang X, Shi W, Bryant SH. Open mass spectrometry search algorithm. J Proteome Res. 2004;3:958–64.

    CAS  PubMed  Google Scholar 

  • Gilar M, Olivova P, Daly AE, Gebler JC. Two-dimensional separation of peptides using RP-RP-HPLC system with different pH in first and second separation dimensions. J Sep Sci. 2005;28:1694–703.

    CAS  PubMed  Google Scholar 

  • Gilar M, Yu Y-Q, Ahn J, Fournier J, Gebler JC. Mixed-mode chromatography for fractionation of peptides, phosphopeptides, and sialylated glycopeptides. J Chromatogr A. 2008;1191:162–70.

    CAS  PubMed  Google Scholar 

  • Glotzer M, Murray AW, Kirschner MW. Cyclin is degraded by the ubiquitin pathway. Nature. 1991;349:132–8.

    CAS  PubMed  Google Scholar 

  • Glozak MA, Sengupta N, Zhang X, Seto E. Acetylation and deacetylation of non-histone proteins. Gene. 2005;363:15–23.

    CAS  PubMed  Google Scholar 

  • Gnad F, Gunawardena J, Mann M. PHOSIDA 2011: the posttranslational modification database. Nucleic Acids Res. 2011;39:D253–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goldberg D, Sutton-Smith M, Paulson J, Dell A. Automatic annotation of matrix-assisted laser desorption/ionization N-glycan spectra. Proteomics. 2005;5:865–75.

    CAS  PubMed  Google Scholar 

  • Grover VK, Valadez JG, Bowman AB, Cooper MK. Lipid modifications of Sonic hedgehog ligand dictate cellular reception and signal response. PLoS One. 2011;6:e21353.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gupta S, Seth A, Davis RJ. Transactivation of gene expression by Myc is inhibited by mutation at the phosphorylation sites Thr-58 and Ser-62. Proc Natl Acad Sci. 1993;90:3216–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hägglund P, Bunkenborg J, Elortza F, Jensen ON, Roepstorff P. A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. J Proteome Res. 2004;3:556–66.

    PubMed  Google Scholar 

  • Hägglund P, Matthiesen R, Elortza F, Højrup P, Roepstorff P, Jensen ON, Bunkenborg J. An enzymatic deglycosylation scheme enabling identification of core fucosylated N-glycans and O-glycosylation site mapping of human plasma proteins. J Proteome Res. 2007;6:3021–31.

    PubMed  Google Scholar 

  • Hakansson K, Cooper HJ, Emmett MR, Costello CE, Marshall AG, Nilsson CL. Electron capture dissociation and infrared multiphoton dissociation MS/MS of an N-glycosylated tryptic peptic to yield complementary sequence information. Anal Chem. 2001;73:4530–6.

    CAS  PubMed  Google Scholar 

  • Hansen BT, Davey SW, Ham AJL, Liebler DC. P-mod: an algorithm and software to map modifications to peptide sequences using tandem MS data. J Proteome Res. 2005;4:358–68.

    CAS  PubMed  Google Scholar 

  • Hao P, Guo T, Sze SK. Simultaneous analysis of proteome, phospho- and glycoproteome of rat kidney tissue with electrostatic repulsion hydrophilic interaction chromatography. PLoS One. 2011;6:e16884.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hart GW, Slawson C, Ramirez-Correa G, Lagerlof O. Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu Rev Biochem. 2011;80:825–58.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hashimoto K, Goto S, Kawano S, Aoki-Kinoshita KF, Ueda N, Hamajima M, Kawasaki T, Kanehisa M. KEGG as a glycome informatics resource. Glycobiology. 2006;5:63R–70.

    Google Scholar 

  • Heidinger-Pauli JM, Ãœnal E, Koshland D. Distinct targets of the Eco1 acetyltransferase modulate cohesion in S phase and in response to DNA damage. Mol Cell. 2009;34:311–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hemsley PA, Weimar T, Lilley KS, Dupree P, Grierson CS. A proteomic approach identifies many novel palmitoylated proteins in Arabidopsis. New Phytol. 2013;197:805–14.

    CAS  PubMed  Google Scholar 

  • Hernandez P, Gras R, Frey J, Appel RD. Popitam: towards new heuristic strategies to improve protein identification from tandem mass spectrometry data. Proteomics. 2003;3:870–8.

    CAS  PubMed  Google Scholar 

  • Himanen JP, Goldgur Y, Miao H, Myshkin E, Guo H, Buck M, Nguyen M, Rajashankar KR, Wang B, Nikolov DB. Ligand recognition by A-class Eph receptors: crystal structures of the EphA2 ligand-binding domain and the EphA2/ephrin-A1 complex. EMBO Rep. 2009;10:722–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Himanen JP, Yermekbayeva L, Janes PW, Walker JR, Xu K, Atapattu L, Rajashankar KR, Mensinga A, Lackmann M, Nikolov DB, Dhe-Paganon S. Architecture of Eph receptor clusters. Proc Natl Acad Sci. 2010;107:10860–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Horn DM, Ge Y, Mclafferty FW. Activated ion electron capture dissociation for mass spectral sequencing of larger (42 KDa) proteins. Anal Chem. 2000;72:4778–84.

    CAS  PubMed  Google Scholar 

  • Hua S, Hu CY, Kim BJ, Totten SM, Oh MJ, Yun N, Nwosu CC, Yoo JS, Lebrilla CB, An HJ. Glyco-Analytical Multispecific Proteolysis (Glyco-AMP): a simple method for detailed and quantitative glycoproteomic characterization. J Proteome Res. 2013;12:4414–23.

    CAS  PubMed  Google Scholar 

  • Hwang C-S, Shemorry A, Varshavsky A. N-terminal acetylation of cellular proteins creates specific degradation signals. Science. 2010;327:973–7.

    CAS  PubMed  Google Scholar 

  • Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, Mizushima N, Tanida I, Kominami E, Ohsumi M, Noda T, Ohsumi Y. A ubiquitin-like system mediates protein lipidation. Nature. 2000;408:488–92.

    CAS  PubMed  Google Scholar 

  • Imperiali B, Rickert KW. Conformational implications of asparagine-linked glycosylation. Proc Natl Acad Sci. 1995;92:97–101.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jadhav T, Wooten MW. Defining an embedded code for protein ubiquitination. J Proteomics Bioinform. 2009;2:316.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jeram SM, Srikumar T, Pedrioli PG, Raught B. Using mass spectrometry to identify ubiquitin and ubiquitin-like protein conjugation sites. Proteomics. 2009;9:922–34.

    CAS  PubMed  Google Scholar 

  • Johnson RS, Taylor JA. Searching sequence databases via de novo peptide sequencing by tandem mass spectrometry. Mol Biotechnol. 2002;22:301–15.

    CAS  PubMed  Google Scholar 

  • Jones ML, Collins MO, Goulding D, Choudhary JS, Rayner JC. Analysis of protein palmitoylation reveals a pervasive role in Plasmodium development and pathogenesis. Cell Host Microbe. 2012;12:246–58.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Joshi HJ, Harrison MJ, Schulz BL, Cooper CA, Packer NH, Karlsson NG. Development of a mass fingerprinting tool for automated interpretation of oligosaccharide fragmentation data. Proteomics. 2004;4:1650–64.

    CAS  PubMed  Google Scholar 

  • Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y, Yoshimori T. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci. 2004;117:2805–12.

    CAS  PubMed  Google Scholar 

  • Kameyama A, Kikuchi N, Nakaya S, Ito H, Sato T, Shikanai T, Takahashi Y, Takahashi K, Narimatsu H. A strategy for identification of oligosaccharide structures using observational multistage mass spectral library. Anal Chem. 2005;77:4719–25.

    CAS  PubMed  Google Scholar 

  • Kang C, Yi GS. Identification of ubiquitin/ubiquitin-like protein modification from tandem mass spectra with various PTMs. BMC Bioinform. 2011;12 Suppl 14:S8.

    CAS  Google Scholar 

  • Kang R, Wan J, Arstikaitis P, Takahashi H, Huang K, Bailey AO, Thompson JX, Roth AF, Drisdel RC, Mastro R, Green WN, Yates JR, Davis 3rd NG, El-Husseini A. Neural palmitoyl-proteomics reveals dynamic synaptic palmitoylation. Nature. 2008;456:904–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kelleher NL, Zubarev RA, Bush K, Furie B, Furie BC, Mclafferty FW, Walsh CT. Localization of labile posttranslational modifications by electron capture dissociation: the case of gamma-carboxyglutamic acid. Anal Chem. 1999;71:4250–3.

    CAS  PubMed  Google Scholar 

  • Kho Y, Kim SC, Jiang C, Barma D, Kwon SW, Cheng J, Jaunbergs J, Weinbaum C, Tamanoi F, Falck J, Zhao Y. A tagging-via-substrate technology for detection and proteomics of farnesylated proteins. Proc Natl Acad Sci U S A. 2004;101:12479–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kimura A, Matsubara K, Horikoshi M. A decade of histone acetylation: marking eukaryotic chromosomes with specific codes. J Biochem. 2005;138:647–62.

    CAS  PubMed  Google Scholar 

  • Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshimori T, Ohsumi M, TAKAO T, Noda T, Ohsumi Y. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol. 2000;151:263–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kletter D, Cao Z, Bern M, Haab B. Determining lectin specificity from glycan array data using motif segregation and GlycoSearch software. Curr Protoc Chem Biol. 2013;5:157–69.

    PubMed Central  PubMed  Google Scholar 

  • Koizumi K, Okada Y, Fukuda M. High-performance liquid chromatography of mono- and oligosaccharides on a graphitized carbon column. Carbohydr Res. 1991;215:67–80.

    CAS  Google Scholar 

  • Komander D, Clague MJ, Urbe S. Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol. 2009;10:550–63.

    CAS  PubMed  Google Scholar 

  • Kostiuk MA, Corvi MM, Keller BO, Plummer G, Prescher JA, Hangauer MJ, Bertozzi CR, Rajaiah G, Falck JR, Berthiaume LG. Identification of palmitoylated mitochondrial proteins using a bio-orthogonal azido-palmitate analogue. FASEB J. 2008;22:721–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kouzarides T. Acetylation: a regulatory modification to rival phosphorylation? EMBO J. 2000;19:1176–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kronewitter SR, An HJ, de Leoz ML, Lebrilla CB, Miyamoto S, Leiserowitz GS. The development of retrosynthetic glycan libraries to profile and classify the human serum N-linked glycome. Proteomics. 2009;9:2986–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kronewitter SR, DE Leoz ML, Strum JS, An HJ, Dimapasoc LM, Guerrero A, Miyamoto S, Lebrilla CB, Leiserowitz GS. The glycolyzer: automated glycan annotation software for high performance mass spectrometry and its application to ovarian cancer glycan biomarker discovery. Proteomics. 2012;12:2523–38.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lapadula AJ, Hatcher PJ, Hanneman AJ, Ashline DJ, Zhang H, Reinhold VN. Congruent strategies for carbohydrate sequencing. 3. OSCAR: an algorithm for assigning oligosaccharide topology from MSn data. Anal Chem. 2005;77:6271–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Larsen MR, Højrup P, Roepstorff P. Characterization of gel-separated glycoproteins using Two-step proteolytic digestion combined with sequential microcolumns and mass spectrometry. Mol Cell Proteomics. 2005;4:107–19.

    CAS  PubMed  Google Scholar 

  • Larsen MR, Jensen SS, Jakobsen LA, Heegaard NHH. Exploring the sialiome using titanium dioxide chromatography and mass spectrometry. Mol Cell Proteomics. 2007;6:1778–87.

    CAS  PubMed  Google Scholar 

  • Lewandrowski U, Zahedi RP, Moebius J, Walter U, Sickmann A. Enhanced N-glycosylation site analysis of sialoglycopeptides by strong cation exchange prefractionation applied to platelet plasma membranes. Mol Cell Proteomics. 2007;6(11):1933–41.

    CAS  PubMed  Google Scholar 

  • Lin R, Zhou X, Huang W, Zhao D, Lu L, Xiong Y, Guan KL, Lei QY. Acetylation control of cancer metabolism. Curr Pharm Des. 2014;20(15):2627–33.

    CAS  PubMed  Google Scholar 

  • Little DP, Speir JP, Senko MW, O’connor PB, Mclafferty FW. Infrared multiphoton dissociation of large multiply-charged ions for biomolecule sequencing. Anal Chem. 1994;66:2809–15.

    CAS  PubMed  Google Scholar 

  • Liu J, Erassov A, Halina P, Canete M, Nguyen DV, Chung C, Cagney G, Ignatchenko A, Fong V, Emili A. Sequential interval motif search: unrestricted database surveys of global MS/MS data sets for detection of putative post-translational modifications. Anal Chem. 2008;80:7846–54.

    CAS  PubMed  Google Scholar 

  • Lohmann KK, von der Lieth CW. GLYCO-FRAGMENT: a web tool to support the interpretation of mass spectra of complex carbohydrates. Proteomics. 2003;3:2028–35.

    CAS  PubMed  Google Scholar 

  • Loss A, Bunsmann P, Bohne A, Schwarzer E, Lang E, von der Lieth CW. SWEET-DB: an attempt to create annotated data collections for carbohydrates. Nucleic Acids Res. 2002;30:405–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Low MG, Prasad AR. A phospholipase D specific for the phosphatidylinositol anchor of cell-surface proteins is abundant in plasma. Proc Natl Acad Sci U S A. 1988;85:980–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luo J, Su F, Chen D, Shiloh A, Gu W. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature. 2000;408:377–81.

    CAS  PubMed  Google Scholar 

  • Luo J, Li M, Tang Y, Laszkowska M, Roeder RG, Gu W. Acetylation of p53 augments its site-specific DNA binding both in vitro and in vivo. Proc Natl Acad Sci U S A. 2004;101:2259–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ma B, Zhang K, Hendrie C, Liang C, Li M, Doherty-Kirby A, Lajoie G. PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom. 2003;17:2337–42.

    CAS  PubMed  Google Scholar 

  • Malm D, Nilssen O. Alpha-mannosidosis. Orphanet J Rare Dis. 2008;3:21.

    PubMed Central  PubMed  Google Scholar 

  • Mann M, Wilm M. Error tolerant identification of peptides in sequence databases by peptide sequence tags. Anal Chem. 1994;66:4390–9.

    CAS  PubMed  Google Scholar 

  • Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002;298:1912–34.

    CAS  PubMed  Google Scholar 

  • Manning JM, Popowicz AM, Padovan JC, Chait BT, Manning LR. Intrinsic regulation of hemoglobin expression by variable subunit interface strengths. FEBS J. 2012;279:361–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marin EP, Derakhshan B, Lam TT, Davalos A, Sessa WC. Endothelial cell palmitoylproteomic identifies novel lipid-modified targets and potential substrates for protein acyl transferases. Circ Res. 2012;110:1336–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marshall AG, Hendrickson CL. High-resolution mass spectrometers. In: Yeung SY, Zare RN, editors. Annual review of analytical chemistry. Palo Alto: Annual Reviews; 2008.

    Google Scholar 

  • Martin BR. Chemical approaches for profiling dynamic palmitoylation. Biochem Soc Trans. 2013;41:43–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martin BR, Cravatt BF. Large-scale profiling of protein palmitoylation in mammalian cells. Nat Methods. 2009;6:135–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martin DD, Vilas GL, Prescher JA, Rajaiah G, Falck JR, Bertozzi CR, Berthiaume LG. Rapid detection, discovery, and identification of post-translationally myristoylated proteins during apoptosis using a bio-orthogonal azidomyristate analog. FASEB J. 2008;22:797–806.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martin-Rendon E, Blake DJ. Protein glycosylation in disease: new insights into the congenital muscular dystrophies. Trends Pharmacol Sci. 2003;24:178–83.

    CAS  PubMed  Google Scholar 

  • Matsumoto ML, Wickliffe KE, Dong KC, Yu C, Bosanac I, Bustos D, Phu L, Kirkpatrick DS, Hymowitz SG, Rape M, Kelley RF, Dixit VM. K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody. Mol Cell. 2010;39:477–84.

    CAS  PubMed  Google Scholar 

  • Matthiesen R, Trelle MB, Hojrup P, Bunkenborg J, Jensen ON. VEMS 3.0: algorithms and computational tools for tandem mass spectrometry based identification of post-translational modifications in proteins. J Proteome Res. 2005;4:2338–47.

    CAS  PubMed  Google Scholar 

  • Merrick BA, Dhungana S, Williams JG, Aloor JJ, Peddada S, Tomer KB, Fessler MB. Proteomic profiling of S-acylated macrophage proteins identifies a role for palmitoylation in mitochondrial targeting of phospholipid scramblase 3. Mol Cell Proteomics. 2011;10:M110.006007.

    PubMed Central  PubMed  Google Scholar 

  • Metz CN, Brunner G, Choi-Muira NH, Nguyen H, Gabrilove J, Caras IW, Altszuler N, Rifkin DB, Wilson EL, Davitz MA. Release of GPI-anchored membrane proteins by a cell-associated GPI-specific phospholipase D. EMBO J. 1994;13:1741–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Metzger MB, Pruneda JN, Klevit RE, Weissman AM. RING-type E3 ligases: Master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination. Biochim Biophys Acta. 2014;1843(1):47–60.

    CAS  PubMed  Google Scholar 

  • Murphy M, Ahn J, Walker KK, Hoffman WH, Evans RM, Levine AJ, George DL. Transcriptional repression by wild-type p53 utilizes histone deacetylases, mediated by interaction with mSin3a. Genes Dev. 1999;13:2490–501.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mysling S, Palmisano G, Højrup P, Thaysen-Andersen M. Utilizing ion-pairing hydrophilic interaction chromatography solid phase extraction for efficient glycopeptide enrichment in glycoproteomics. Anal Chem. 2010;82:5598–609.

    CAS  PubMed  Google Scholar 

  • Nakayasu ES, Ansong C, Brown JN, Yang F, Lopez-Ferrer D, Qian WJ, Smith RD, Adkins JN. Evaluation of selected binding domains for the analysis of ubiquitinated proteomes. J Am Soc Mass Spectrom. 2013;24:1214–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Newton K, Matsumoto ML, Wertz IE, Kirkpatrick DS, Lill JR, Tan J, Dugger D, Gordon N, Sidhu SS, Fellouse FA, Komuves L, French DM, Ferrando RE, Lam C, Compaan D, Yu C, Bosanac I, Hymowitz SG, Kelley RF, Dixit VM. Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies. Cell. 2008;134:668–78.

    CAS  PubMed  Google Scholar 

  • Nilsson CL. Advances in quantitative phosphoproteomics. Anal Chem. 2011a;84:735–46.

    PubMed  Google Scholar 

  • Nilsson CL. Lectin techniques for glycoproteomics. Curr Proteomics. 2011b;8:248–56.

    CAS  Google Scholar 

  • Nilsson IM, von Heijne G. Determination of the distance between the oligosaccharyltransferase active site and the endoplasmic reticulum membrane. J Biol Chem. 1993;268:5798–801.

    CAS  PubMed  Google Scholar 

  • Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell. 2006;127:635–48.

    CAS  PubMed  Google Scholar 

  • Oppermann FS, Gnad F, Olsen JV, Hornberger R, Greff Z, Keri G, Mann M, Daub H. Large-scale proteomics analysis of the human kinome. Mol Cell Proteomics. 2009;8:1751–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Packer NH, Lawson MA, Jardine DR, Redmond JW. A general approach to desalting oligosaccharides released from glycoproteins. Glycoconj J. 1998;15:737–47.

    CAS  PubMed  Google Scholar 

  • Palm W, Swierczynska MM, Kumari V, Ehrhart-Bornstein M, Bornstein SR, Eaton S. Secretion and signaling activities of lipoprotein-associated hedgehog and non-sterol-modified hedgehog in flies and mammals. PLoS Biol. 2013;11:e1001505.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Palmisano G, Lendal S, Larsen M. Titanium dioxide enrichment of sialic acid-containing glycopeptides. In: Gevaert K, Vandekerckhove J, editors. Gel-free proteomics. Totowa: Humana Press; 2011.

    Google Scholar 

  • Palmisano G, Melo-Braga MN, Engholm-Keller K, Parker BL, Larsen MR. Chemical deamidation: a common pitfall in large-scale N-linked glycoproteomic mass spectrometry-based analyses. J Proteome Res. 2012;11:1949–57.

    CAS  PubMed  Google Scholar 

  • Pedrioli PG, Raught B, Zhang XD, Rogers R, Aitchison J, Matunis M, Aebersold R. Automated identification of SUMOylation sites using mass spectrometry and SUMmOn pattern recognition software. Nat Methods. 2006;3:533–9.

    CAS  PubMed  Google Scholar 

  • Peng J, Schwartz D, Elias JE, Thoreen CC, Cheng D, Marsischky G, Roelofs J, Finley D, Gygi SP. A proteomics approach to understanding protein ubiquitination. Nat Biotechnol. 2003;21:921–6.

    CAS  PubMed  Google Scholar 

  • Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. 1999;20:3551–67.

    CAS  PubMed  Google Scholar 

  • Pfleger CM, Kirschner MW. The KEN box: an APC recognition signal distinct from the D box targeted by Cdh1. Genes Dev. 2000;14:655–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Phanstiel DH, Brumbaugh J, Wenger CD, Tian SL, Probasco MD, Bailey DJ, Swaney DL, Tervo MA, Bolin JM, Ruotti V, Stewart R, Thomson JA, Coon JJ. Proteomic and phosphoproteomic comparison of human ES and iPS cells. Nat Methods. 2011;8:821–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pompach P, Chandler KB, Lan R, Edwards N, Goldman R. Semi-automated identification of N-Glycopeptides by hydrophilic interaction chromatography, nano-reverse-phase LC-MS/MS, and glycan database search. J Proteome Res. 2012;11:1728–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Porter JA, Young KE, Beachy PA. Cholesterol modification of hedgehog signaling proteins in animal development. Science. 1996;274:255–9.

    CAS  PubMed  Google Scholar 

  • Potthast F, Gerrits B, Hakkinen J, Rutishauser D, Ahrens CH, Roschitzki B, Baerenfaller K, Munton RP, Walther P, Gehrig P, Seif P, Seebergerg PH, Schlapbach R. The mass distance fingerprint: a statistical framework for de novo detection of predominant modifications using high-accuracy mass spectrometry. J Chromatogr B-Anal Technol Biomed Life Sci. 2007;854:173–82.

    CAS  Google Scholar 

  • Quandt A, Masselot A, Hernandez P, Hernandez C, Maffioletti S, Appel RD, Lisacek F. SwissPIT: an workflow-based platform for analyzing tandem-MS spectra using the grid. Proteomics. 2009;9:2648–55.

    CAS  PubMed  Google Scholar 

  • Ranzinger R, Herget S, von der Lieth CW, Frank M. GlycomeDB–a unified database for carbohydrate structures. Nucleic Acids Res. 2011;39:D373–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reich NC. STAT3 Revs up the powerhouse. Sci Signal. 2009;2:pe61.

    PubMed  Google Scholar 

  • Reinhold V, Zhang H, Hanneman A, Ashline D. Toward a platform for comprehensive glycan sequencing. Mol Cell Proteomics. 2013;12:866–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Resh MD. Use of analogs and inhibitors to study the functional significance of protein palmitoylation. Methods. 2006;40:191–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rivera CM, Ren B. Mapping human epigenomes. Cell. 2013;155:39–55.

    CAS  PubMed  Google Scholar 

  • Robinson NE, Robinson A. Deamidation of human proteins. Proc Natl Acad Sci. 2001;98:12409–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rogers S, Wells R, Rechsteiner M. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science. 1986;234:364–8.

    CAS  PubMed  Google Scholar 

  • Roth AF, Wan J, Bailey AO, Sun B, Kuchar JA, Green WN, Phinney BS, Yates 3rd JR, Davis NG. Global analysis of protein palmitoylation in yeast. Cell. 2006;125:1003–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rutishauser U. Polysialic acid in the plasticity of the developing and adult vertebrate nervous system. Nat Rev Neurosci. 2008;9:26–35.

    CAS  PubMed  Google Scholar 

  • Ryan KE, Chiang C. Hedgehog secretion and signal transduction in vertebrates. J Biol Chem. 2012;287:17905–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Satomi Y, Shimonishi Y, Takao T. N-glycosylation at Asn491 in the Asn-Xaa-Cys motif of human transferrin. FEBS Lett. 2004;576:51–6.

    CAS  PubMed  Google Scholar 

  • Savitski MM, Nielsen ML, Zubarev RA. ModifiComb, a new proteomic tool for mapping substoichiometric post-translational modifications, finding novel types of modifications, and fingerprinting complex protein mixtures. Mol Cell Proteomics. 2006;5:935–48.

    CAS  PubMed  Google Scholar 

  • Savitski MM, Lemeer S, Boesche M, Lang M, Mathieson T, Bantscheff M, Kuster B. Confident phosphorylation site localization using the mascot delta score. Mol Cell Proteomics. 2011;10:M110.003830.

    PubMed Central  PubMed  Google Scholar 

  • Schachter H, Freeze HH. Glycosylation diseases: Quo vadis? Biochimica et Biophys Acta (BBA) Mol Basis Dis. 2009;1792:925–30.

    CAS  Google Scholar 

  • Scheffner M, Kumar S. Mammalian HECT ubiquitin-protein ligases: biological and pathophysiological aspects. Biochim Biophys Acta. 2014;1843(1):61–74.

    CAS  PubMed  Google Scholar 

  • Schulman BA, Harper JW. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat Rev Mol Cell Biol. 2009;10:319–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scott NE, Parker BL, Connolly AM, Paulech J, Edwards AVG, Crossett B, Falconer L, Kolarich D, Djordjevic SP, Højrup P, Packer NH, Larsen MR, Cordwell SJ. Simultaneous glycan-peptide characterization using hydrophilic interaction chromatography and parallel fragmentation by CID, higher energy collisional dissociation, and electron transfer dissociation MS applied to the N-linked glycoproteome of Campylobacter jejuni. Mol Cell Proteomics. 2011;10.

    Google Scholar 

  • Searle BC, Dasari S, Wilmarth PA, Turner M, Reddy AP, David LL, Nagalla SR. Identification of protein modifications using MS/MS de novo sequencing and the OpenSea alignment algorithm. J Proteome Res. 2005;4:546–54.

    CAS  PubMed  Google Scholar 

  • Serebryakova MV, Demina IA, Galyamina MA, Kondratov IG, Ladygina VG, Govorun VM. The acylation state of surface lipoproteins of mollicute Acholeplasma laidlawii. J Biol Chem. 2011;286:22769–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Singh C, Zampronio CG, Creese AJ, Cooper HJ. Higher Energy Collision Dissociation (HCD) Product Ion-Triggered Electron Transfer Dissociation (ETD) mass spectrometry for the analysis of N-linked glycoproteins. J Proteome Res. 2012;11:4517–25.

    CAS  PubMed  Google Scholar 

  • Siuti N, Kelleher NL. Decoding protein modifications using top-down mass spectrometry. Nat Methods. 2007;4:817–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith CA, O’maille G, Want EJ, Qin C, Trauger SA, Brandon TR, Custodio DE, Abagyan R, Siuzdak G. METLIN: a metabolite mass spectral database. Ther Drug Monit. 2005;27:747–51.

    CAS  PubMed  Google Scholar 

  • Spange S, Wagner T, Heinzel T, Krämer OH. Acetylation of non-histone proteins modulates cellular signalling at multiple levels. Int J Biochem Cell Biol. 2009;41:185–98.

    CAS  PubMed  Google Scholar 

  • Starheim KK, Gromyko D, Evjenth R, Ryningen A, Varhaug JE, Lillehaug JR, Arnesen T. Knockdown of human Nα-terminal acetyltransferase complex C leads to p53-dependent apoptosis and aberrant human Arl8b localization. Mol Cell Biol. 2009;29:3569–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sykes SM, Mellert HS, Holbert MA, Li K, Marmorstein R, Lane WS, Mcmahon SB. Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Mol Cell. 2006;24:841–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tang H, Mechref Y, Novotny MV. Automated interpretation of MS/MS spectra of oligosaccharides. Bioinformatics. 2005;21 Suppl 1:i431–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tanner S, Shu HJ, Frank A, Wang LC, Zandi E, Mumby M, Pevzner PA, Bafna V. InsPecT: identification of posttransiationally modified peptides from tandem mass spectra. Anal Chem. 2005;77:4626–39.

    CAS  PubMed  Google Scholar 

  • Taus T, Kocher T, Pichler P, Paschke C, Schmidt A, Henrich C, Mechtler K. Universal and confident phosphorylation site localization using phosphoRS. J Proteome Res. 2011;10:5354–62.

    CAS  PubMed  Google Scholar 

  • Tipton JD, Tran JC, Catherman AD, Ahlf DR, Durbin KR, Kelleher NL. Analysis of intact protein isoforms by mass spectrometry. J Biol Chem. 2011;286:25451–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tom CT, Martin BR. Fat chance! Getting a grip on a slippery modification. ACS Chem Biol. 2013;8:46–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsur D, Tanner S, Zandi E, Bafna V, Pevzner PA. Identification of post-translational modifications by blind search of mass spectra. Nat Biotechnol. 2005;23:1562–7.

    CAS  PubMed  Google Scholar 

  • Udeshi ND, Mani DR, Eisenhaure T, Mertins P, Jaffe JD, Clauser KR, Hacohen N, Carr SA. Methods for quantification of in vivo changes in protein ubiquitination following proteasome and deubiquitinase inhibition. Mol Cell Proteomics. 2012;11:148–59.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ujihara T, Sakurai I, Mizusawa N, Wada H. A method for analyzing lipid-modified proteins with mass spectrometry. Anal Biochem. 2008;374:429–31.

    CAS  PubMed  Google Scholar 

  • Vakhrushev SY, Dadimov D, Peter-Katalinic J. Software platform for high-throughput glycomics. Anal Chem. 2009;81:3252–60.

    CAS  PubMed  Google Scholar 

  • van Damme P, Arnesen T, Gevaert K. Protein alpha-N-acetylation studied by N-terminomics. FEBS J. 2011;278:3822–34.

    PubMed  Google Scholar 

  • van Wijk SJ, Timmers HT. The family of ubiquitin-conjugating enzymes (E2s): deciding between life and death of proteins. FASEB J. 2010;24:981–93.

    PubMed  Google Scholar 

  • Varki A. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology. 1993;3:97–130.

    CAS  PubMed  Google Scholar 

  • Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME. Essentials of glycobiology. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2009.

    Google Scholar 

  • Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, Mckusick VA, Zinder N, Levine AJ, Roberts RJ, Simon M, Slayman C, Hunkapiller M, Bolanos R, Delcher A, Dew I, Fasulo D, Flanigan M, Florea L, Halpern A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington K, Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M, Chandramouliswaran I, Charlab R, Chaturvedi K, Deng Z, DI Francesco V, Dunn P, Eilbeck K, Evangelista C, Gabrielian AE, Gan W, Ge W, Gong F, Gu Z, Guan P, Heiman TJ, Higgins ME, Ji R-R, Ke Z, Ketchum KA, Lai Z, Lei Y, Li Z, Li J-L, Liang Y, Lin X, Lu F, Merkulov GV, Milshina N, Moore HM, Naik AK, Narayan VA, Neelam B, Nusskern D, Rusch DB, salzberg S, Shao W, Shue B, Sun J, Wang ZY, Wang A, Wang X, Wang J, Wei M-H, Wides R, Xiao C, Yan C, et al. The sequence of the human genome. Science. 2001;291:1304–51.

    CAS  PubMed  Google Scholar 

  • von der Lieth CW, Freire AA, Blank D, Campbell MP, Ceroni A, Damerell DR, Dell A, Dwek RA, Ernst B, Fogh R, Frank M, Geyer H, Geyer R, Harrison MJ, Henrick K, Herget S, Hull WE, Ionides J, Joshi HJ, Kamerling JP, Leeflang BR, Lutteke T, Lundborg M, Maass K, Merry A, Ranzinger R, rosen J, Royle L, Rudd PM, Schloissnig S, Stenutz R, Vranken WF, Widmalm G, Haslam SM. EUROCarbDB: an open-access platform for glycoinformatics. Glycobiology. 2011;21:493–502.

    PubMed Central  PubMed  Google Scholar 

  • Voutsadakis IA. Pathogenesis of colorectal carcinoma and therapeutic implications: the roles of the ubiquitin-proteasome system and Cox-2. J Cell Mol Med. 2007;11:252–85.

    CAS  PubMed  Google Scholar 

  • Voutsadakis IA. Ubiquitination and the ubiquitin-proteasome system as regulators of transcription and transcription factors in epithelial mesenchymal transition of cancer. Tumour Biol. 2012;33:897–910.

    CAS  PubMed  Google Scholar 

  • Wang W, Yang X, Kawai T, De Silanes IL, Mazan-Mamczarz K, Chen P, Chook YM, Quensel C, Köhler M, Gorospe M. AMP-activated protein kinase-regulated phosphorylation and acetylation of importin α1: involvement in the nuclear import of RNA-binding protein HuR. J Biol Chem. 2004;279:48376–88.

    CAS  PubMed  Google Scholar 

  • Wang Z, Pandey A, Hart GW. Dynamic interplay between O-linked N-acetylglucosaminylation and glycogen synthase kinase-3-dependent phosphorylation. Mol Cell Proteomics. 2007;6:1365–79.

    CAS  PubMed  Google Scholar 

  • Washburn MP, Wolters D, Yates 3rd JR. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol. 2001;19:242–7.

    CAS  PubMed  Google Scholar 

  • Wimley WC, Creamer TP, White SH. Solvation energies of amino acid side chains and backbone in a family of host–guest pentapeptides†. Biochemistry. 1996;35:5109–24.

    CAS  PubMed  Google Scholar 

  • Witze ES, Old WM, Resing KA, Ahn NG. Mapping protein post-translational modifications with mass spectrometry. Nat Methods. 2007;4:798–806.

    CAS  PubMed  Google Scholar 

  • Woodworth A, Fiete D, Baenziger JU. Spatial and temporal regulation of tenascin-R glycosylation in the cerebellum. J Biol Chem. 2002;277:50941–7.

    CAS  PubMed  Google Scholar 

  • Wotske M, WU Y, Wolters DA. Liquid chromatographic analysis and mass spectrometric identification of farnesylated peptides. Anal Chem. 2012;84:6848–55.

    CAS  PubMed  Google Scholar 

  • Wu S-L, Huhmer AFR, Hao Z, Karger BL. On-line LC–MS approach combining collision-induced dissociation (CID), electron-transfer dissociation (ETD), and CID of an isolated charge-reduced species for the trace-level characterization of proteins with post-translational modifications. J Proteome Res. 2007;6:4230–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wuhrer M, Koeleman CAM, Hokke CH, Deelder AM. Protein glycosylation analyzed by normal-phase nano-liquid chromatography–mass spectrometry of glycopeptides. Anal Chem. 2004;77:886–94.

    Google Scholar 

  • Yang XJ, Seto E. HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene. 2007;26:5310–18.

    CAS  PubMed  Google Scholar 

  • Yang WH, Kim JE, Nam HW, Ju JW, Kim HS, Kim YS, Cho JW. Modification of p53 with O-linked N-acetylglucosamine regulates p53 activity and stability. Nat Cell Biol. 2006;8:1074–83.

    CAS  PubMed  Google Scholar 

  • Yang W, Di Vizio D, Kirchner M, Steen H, Freeman MR. Proteome scale characterization of human S-acylated proteins in lipid raft-enriched and non-raft membranes. Mol Cell Proteomics. 2010;9:54–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yuan H, Marmorstein R. Histone acetyltransferases: rising ancient counterparts to protein kinases. Biopolymers. 2013;99:98–111.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zeidan Q, Hart GW. The intersections between O-GlcNAcylation and phosphorylation: implications for multiple signaling pathways. J Cell Sci. 2010;123:13–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zeidman R, Jackson CS, Magee AI. Protein acyl thioesterases (Review). Mol Membr Biol. 2009;26:32–41.

    CAS  PubMed  Google Scholar 

  • Zhang H, Aebersold R. Isolation of glycoproteins and identification of their N-linked glycosylation sites. In: New and emerging proteomic techniques. Totowa: Humana Press; 2006.

    Google Scholar 

  • Zhang H, Li X, Martin DB, Aebersold R. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol. 2003;21:660–6.

    CAS  PubMed  Google Scholar 

  • Zhang H, Singh S, Reinhold VN. Congruent strategies for carbohydrate sequencing. 2. FragLib: an MSn spectral library. Anal Chem. 2005;77:6263–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang J, Planey SL, Ceballos C, Stevens Jr SM, Keay SK, Zacharias DA. Identification of CKAP4/p63 as a major substrate of the palmitoyl acyltransferase DHHC2, a putative tumor suppressor, using a novel proteomics method. Mol Cell Proteomics. 2008;7:1378–88.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang H, Guo T, Li X, Datta A, Park JE, Yang J, Lim SK, Tam JP, Sze SK. Simultaneous characterization of glyco- and phosphoproteomes of mouse brain membrane proteome with electrostatic repulsion hydrophilic interaction chromatography. Mol Cell Proteomics. 2010;9:635–47.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zozulya S, Stryer L. Calcium-myristoyl protein switch. Proc Natl Acad Sci U S A. 1992;89:11569–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zubarev RA, Kelleher NL, Mclafferty FW. Electron capture dissociation of multiply charged protein cations. A nonergodic process. J Am Chem Soc. 1998;120:3265–6.

    CAS  Google Scholar 

  • Zubarev RA, Horn DM, Fridriksson EK, Kelleher NL, Kruger NA, Lewis MA, Carpenter BK, Mclafferty FW. Electron capture dissociation for structural characterization of multiply charged protein cations. Anal Chem. 2000;72:563–73.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol L. Nilsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lichti, C.F. et al. (2014). Post-translational Modifications in the Human Proteome. In: Marko-Varga, G. (eds) Genomics and Proteomics for Clinical Discovery and Development. Translational Bioinformatics, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9202-8_6

Download citation

Publish with us

Policies and ethics