Skip to main content

Rapid Advances in the Field of Epigenetics

  • Chapter
  • First Online:
Genomics and Proteomics for Clinical Discovery and Development

Part of the book series: Translational Bioinformatics ((TRBIO,volume 6))

  • 1384 Accesses

Abstract

Epigenetic regulations have been known as phenomena such as the X chromosome inactivation since the mid-twentieth century. Recently, DNA methylation and post-translational modification on histones, which consist chromatin, have been proved to mediate the epigenetic regulations. Then, DNA methyltransferases and histone deacetylases have been implicated in carcinogenesis to be attractive drug targets.

More recently, the filed of epigenome is rapidly advancing by findings such as methyltransferases and demethylases for histones and DNA demethylases and about 40 % of the genome was transcribed into none-coding RNA which participated in further transcriptional regulations. It also has been known that many life phenomena are regulated epigenetically with familiar factors including vitamins, environmental hormones and viral infection.

In this chapter, Sect. 10.1 presents the history of epigenome, the epigenetic regulators including DNA, histones and RNA, and some epigenetic phenomena such as reprograming and differentiation. Section 10.2 describes epigenome drug targets and current situation of the drug development. In addition, as the latest approaches, we illustrate genomic next generation sequencer and proteomic mass spectrometer.

Mass spectrometry is now approaching to the level to identify almost all of the translated proteins and have advantages in direct detection of post-translational modifications by their molecular shift. As an example of the epigenome analyses, we describe the methods, challenges and perspectives to reveal combinatorial histone modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DNMT:

DNA methyltransferase

HAT:

Histone Acetyl Transferase

HDAC:

Histone deacetylase

HMT:

Histone methyltransferase

KDM:

Lysine Demethylase

ncRNA:

Non-coding RNA

SAM:

S-adenosylmethionine

SAH:

S-adenosylhomocysteine

HTS:

High throughput screening

NGS:

Next Generation DNA Sequencer

SNP:

Single nucleotide polymorphism

LC-MS:

Liquid Chromatography Mass Spectrometry

ETD:

Electron transfer dissociation

ECD:

Electron Capture Dissociation

SRM:

Selected Reaction Monitoring

MRM:

Multiple Reaction Monitoring

References

  • Ando T, Yoshida T, Enomoto S, Asada K, Tatematsu M, Ichinose M, Sugiyama T, Ushijima T. DNA methylation of microRNA genes in gastric mucosae of gastric cancer patients: its possible involvement in the formation of epigenetic field defect. Int J Cancer. 2009;124:2367–74.

    Article  CAS  PubMed  Google Scholar 

  • Anway MD, Skinner MK. Epigenetic programming of the germ line: effects of endocrine disruptors on the development of transgenerational disease. Reprod Biomed Online. 2008;16:23–5.

    Article  PubMed  Google Scholar 

  • Anway MD, Cupp AS, Uzumcu M, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science. 2005;308:1466–9.

    Article  CAS  PubMed  Google Scholar 

  • Arnaudo AM, Garcia BA. Proteomic characterization of novel histone post-translational modifications. Epigenetics Chromatin. 2013;6:24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Copeland RA, Solomon ME, Richon VM. Protein methyltransferases as a target class for drug discovery. Nat Rev Drug Discov. 2009;8:724–32.

    Article  CAS  PubMed  Google Scholar 

  • Dai C, Gu W. p53 post-translational modification: deregulated in tumorigenesis. Trends Mol Med. 2010;16:528–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • David Allis C, Jenuwein T, Reinberg D. Epigenetics. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2007.

    Google Scholar 

  • Denell RE. Homoeosis in Drosophila. I. Complementation studies with revertants of Nasobemia. Genetics. 1973;75:279–97.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Di Leva G, Croce CM. miRNA profiling of cancer. Curr Opin Genet Dev. 2013;23:3–11.

    Article  PubMed Central  PubMed  Google Scholar 

  • Dvash T, Fan G. Epigenetic regulation of X-inactivation in human embryonic stem cells. Epigenetics. 2009;4:19–22.

    Article  CAS  PubMed  Google Scholar 

  • Esteller M. Epigenetics in cancer. N Engl J Med. 2008;358:1148–59.

    Article  CAS  PubMed  Google Scholar 

  • Fischle W, Wang Y, Allis CD. Binary switches and modification cassettes in histone biology and beyond. Nature. 2003;425:475–9.

    Article  CAS  PubMed  Google Scholar 

  • Fujita T, Fujii H. Efficient isolation of specific genomic regions and identification of associated proteins by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR. Biochem Biophys Res Commun. 2013;439:132–6.

    Article  CAS  PubMed  Google Scholar 

  • Garcia BA, Thomas CE, Kelleher NL, Mizzen CA. Tissue-specific expression and post-translational modification of histone H3 variants. J Proteome Res. 2008;7:4225–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Graff J, Tsai LH. Histone acetylation: molecular mnemonics on the chromatin. Nat Rev Neurosci. 2013;14:97–111.

    Article  PubMed  Google Scholar 

  • Hipolito CJ, Suga H. Ribosomal production and in vitro selection of natural product-like peptidomimetics: the FIT and RaPID systems. Curr Opin Chem Biol. 2012;16:196–203.

    Article  CAS  PubMed  Google Scholar 

  • Jurinke C, Denissenko MF, Oeth P, Ehrich M, van den Boom D, Cantor CR. A single nucleotide polymorphism based approach for the identification and characterization of gene expression modulation using MassARRAY. Mutat Res. 2005;573:83–95.

    Article  CAS  PubMed  Google Scholar 

  • Kalli A, Sweredoski MJ, Hess S. Data-dependent middle-down nano-liquid chromatography-electron capture dissociation-tandem mass spectrometry: an application for the analysis of unfractionated histones. Anal Chem. 2013;85:3501–7.

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita T, Ikeda Y, Ishikawa R. Genomic imprinting: a balance between antagonistic roles of parental chromosomes. Semin Cell Dev Biol. 2008;19:574–9.

    Article  CAS  PubMed  Google Scholar 

  • Kipp DR, Quinn CM, Fortin PD. Enzyme-dependent lysine deprotonation in EZH2 catalysis. Biochemistry. 2013;52:6866–78.

    Article  CAS  PubMed  Google Scholar 

  • Kon A, Shih LY, Minamino M, Sanada M, Shiraishi Y, Nagata Y, Yoshida K, Okuno Y, Bando M, Nakato R, Ishikawa S, Sato-Otsubo A, Nagae G, Nishimoto A, Haferlach C, Nowak D, Sato Y, Alpermann T, Nagasaki M, Shimamura T, Tanaka H, Chiba K, Yamamoto R, Yamaguchi T, Otsu M, Obara N, Sakata-Yanagimoto M, Nakamaki T, Ishiyama K, Nolte F, Hofmann WK, Miyawaki S, Chiba S, Mori H, Nakauchi H, Koeffler HP, Aburatani H, Haferlach T, Shirahige K, Miyano S, Ogawa S. Recurrent mutations in multiple components of the cohesin complex in myeloid neoplasms. Nat Genet. 2013;45:1232–7.

    Article  CAS  PubMed  Google Scholar 

  • Kooistra SM, Helin K. Molecular mechanisms and potential functions of histone demethylases. Nat Rev Mol Cell Biol. 2012;13:297–311.

    CAS  PubMed  Google Scholar 

  • Kubicek S, O'Sullivan RJ, August EM, Hickey ER, Zhang Q, Teodoro ML, Rea S, Mechtler K, Kowalski JA, Homon CA, Kelly TA, Jenuwein T. Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol Cell. 2007;25:473–81.

    Article  CAS  PubMed  Google Scholar 

  • Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D. Histone methyltransferase activity associated with a human multiprotein complex containing the enhancer of Zeste protein. Genes Dev. 2002;16:2893–905.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee JT, Bartolomei MS. X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell. 2013;152:1308–23.

    Article  CAS  PubMed  Google Scholar 

  • Lorenz KZ. The evolution of behavior. Sci Am. 1958;199:67–74. passim.

    Article  CAS  PubMed  Google Scholar 

  • Maekita T, Nakazawa K, Mihara M, Nakajima T, Yanaoka K, Iguchi M, Arii K, Kaneda A, Tsukamoto T, Tatematsu M, Tamura G, Saito D, Sugimura T, Ichinose M, Ushijima T. High levels of aberrant DNA methylation in Helicobacter pylori-infected gastric mucosae and its possible association with gastric cancer risk. Clin Cancer Res. 2006;12:989–95.

    Article  CAS  PubMed  Google Scholar 

  • Marazzi I, Ho JS, Kim J, Manicassamy B, Dewell S, Albrecht RA, Seibert CW, Schaefer U, Jeffrey KL, Prinjha RK, Lee K, Garcia-Sastre A, Roeder RG, Tarakhovsky A. Suppression of the antiviral response by an influenza histone mimic. Nature. 2012;483:428–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McCabe MT, Ott HM, Ganji G, Korenchuk S, Thompson C, Van Aller GS, Liu Y, Graves AP, Della Pietra 3rd A, Diaz E, LaFrance LV, Mellinger M, Duquenne C, Tian X, Kruger RG, McHugh CF, Brandt M, Miller WH, Dhanak D, Verma SK, Tummino PJ, Creasy CL. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature. 2012;492:108–12.

    Article  CAS  PubMed  Google Scholar 

  • Mohammed SI, Springfield S, Das R. Role of epigenetics in cancer health disparities. Methods Mol Biol. 2012;863:395–410.

    Article  CAS  PubMed  Google Scholar 

  • Muller C, Leutz A. Chromatin remodeling in development and differentiation. Curr Opin Genet Dev. 2001;11:167–74.

    Article  CAS  PubMed  Google Scholar 

  • Nair SS, Kumar R. Chromatin remodeling in cancer: a gateway to regulate gene transcription. Mol Oncol. 2012;6:611–19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ng SF, Lin RC, Laybutt DR, Barres R, Owens JA, Morris MJ. Chronic high-fat diet in fathers programs beta-cell dysfunction in female rat offspring. Nature. 2010;467:963–6.

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama A, Yamaguchi L, Sharif J, Johmura Y, Kawamura T, Nakanishi K, Shimamura S, Arita K, Kodama T, Ishikawa F, Koseki H, Nakanishi M. Uhrf1-dependent H3K23 ubiquitylation couples maintenance DNA methylation and replication. Nature. 2013;502:249–53.

    Article  CAS  PubMed  Google Scholar 

  • Nozawa RS, Nagao K, Igami KT, Shibata S, Shirai N, Nozaki N, Sado T, Kimura H, Obuse C. Human inactive X chromosome is compacted through a PRC2-independent SMCHD1-HBiX1 pathway. Nat Struct Mol Biol. 2013;20:566–73.

    Article  CAS  PubMed  Google Scholar 

  • Peters AH, Kubicek S, Mechtler K, O'Sullivan RJ, Derijck AA, Perez-Burgos L, Kohlmaier A, Opravil S, Tachibana M, Shinkai Y, Martens JH, Jenuwein T. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol Cell. 2003;12:1577–89.

    Article  CAS  PubMed  Google Scholar 

  • Phanstiel D, Brumbaugh J, Berggren WT, Conard K, Feng X, Levenstein ME, McAlister GC, Thomson JA, Coon JJ. Mass spectrometry identifies and quantifies 74 unique histone H4 isoforms in differentiating human embryonic stem cells. Proc Natl Acad Sci U S A. 2008;105:4093–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature. 2007;447:425–32.

    Article  CAS  PubMed  Google Scholar 

  • Richly H, Aloia L, Di Croce L. Roles of the polycomb group proteins in stem cells and cancer. Cell Death Dis. 2011;2:e204.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rivera CM, Ren B. Mapping human epigenomes. Cell. 2013;155:39–55.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Paredes M, Esteller M. Cancer epigenetics reaches mainstream oncology. Nat Med. 2011;17:330–9.

    Article  CAS  PubMed  Google Scholar 

  • Schones DE, Zhao K. Genome-wide approaches to studying chromatin modifications. Nat Rev Genet. 2008;9:179–91.

    Article  CAS  PubMed  Google Scholar 

  • Seong KH, Li D, Shimizu H, Nakamura R, Ishii S. Inheritance of stress-induced, ATF-2-dependent epigenetic change. Cell. 2011;145:1049–61.

    Article  CAS  PubMed  Google Scholar 

  • Shin T, Kraemer D, Pryor J, Liu L, Rugila J, Howe L, Buck S, Murphy K, Lyons L, Westhusin M. A cat cloned by nuclear transplantation. Nature. 2002;415:859.

    Article  CAS  PubMed  Google Scholar 

  • Singh TR, Gupta A, Suravajhala P. Challenges in the miRNA research. Int J Bioinform Res Appl. 2013;9:576–83.

    Article  CAS  PubMed  Google Scholar 

  • Szyf M, Detich N. Regulation of the DNA methylation machinery and its role in cellular transformation. Prog Nucleic Acid Res Mol Biol. 2001;69:47–79.

    Article  CAS  PubMed  Google Scholar 

  • Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324:930–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tan J, Yang X, Zhuang L, Jiang X, Chen W, Lee PL, Karuturi RK, Tan PB, Liu ET, Yu Q. Pharmacologic disruption of polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev. 2007;21:1050–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tan YR, Peng D, Chen CM, Qin XQ. Nonstructural protein-1 of respiratory syncytial virus regulates HOX gene expression through interacting with histone. Mol Biol Rep. 2013;40:675–9.

    Article  CAS  PubMed  Google Scholar 

  • Turek-Plewa J, Jagodzinski PP. The role of mammalian DNA methyltransferases in the regulation of gene expression. Cell Mol Biol Lett. 2005;10:631–47.

    CAS  PubMed  Google Scholar 

  • Tweedie-Cullen RY, Brunner AM, Grossmann J, Mohanna S, Sichau D, Nanni P, Panse C, Mansuy IM. Identification of combinatorial patterns of post-translational modifications on individual histones in the mouse brain. PLoS One. 2012;7:e36980.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Waddington C. The epigenotype. Endeavour. 1942;1:18–20.

    Google Scholar 

  • Wagner JM, Hackanson B, Lubbert M, Jung M. Histone deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy. Clin Epigenetics. 2010;1:117–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Waldmann T, Schneider R. Targeting histone modifications–epigenetics in cancer. Curr Opin Cell Biol. 2013;25:184–9.

    Article  CAS  PubMed  Google Scholar 

  • Xu K, Wu ZJ, Groner AC, He HH, Cai C, Lis RT, Wu X, Stack EC, Loda M, Liu T, Xu H, Cato L, Thornton JE, Gregory RI, Morrissey C, Vessella RL, Montironi R, Magi-Galluzzi C, Kantoff PW, Balk SP, Liu XS, Brown M. EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. Science. 2012;338:1465–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yates 3rd JR, Kelleher NL. Top down proteomics. Anal Chem. 2013;85:6151.

    Article  CAS  PubMed  Google Scholar 

  • Yost JM, Korboukh I, Liu F, Gao C, Jin J. Targets in epigenetics: inhibiting the methyl writers of the histone code. Curr Chem Genomics. 2011;5:72–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Young NL, DiMaggio PA, Plazas-Mayorca MD, Baliban RC, Floudas CA, Garcia BA. High throughput characterization of combinatorial histone codes. Mol Cell Proteomics. 2009;8:2266–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Young NL, Dimaggio PA, Garcia BA. The significance, development and progress of high-throughput combinatorial histone code analysis. Cell Mol Life Sci. 2010;67:3983–4000.

    Article  CAS  PubMed  Google Scholar 

  • Zempleni J, Chew YC, Hassan YI, Wijeratne SS. Epigenetic regulation of chromatin structure and gene function by biotin: are biotin requirements being met? Nutr Rev. 2008;66 Suppl 1:S46–8.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zheng Y, Sweet SM, Popovic R, Martinez-Garcia E, Tipton JD, Thomas PM, Licht JD, Kelleher NL. Total kinetic analysis reveals how combinatorial methylation patterns are established on lysines 27 and 36 of histone H3. Proc Natl Acad Sci U S A. 2012;109:13549–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng Y, Thomas PM, Kelleher NL. Measurement of acetylation turnover at distinct lysines in human histones identifies long-lived acetylation sites. Nat Commun. 2013;4:2203.

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Kawamura Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kawamura, T. (2014). Rapid Advances in the Field of Epigenetics. In: Marko-Varga, G. (eds) Genomics and Proteomics for Clinical Discovery and Development. Translational Bioinformatics, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9202-8_10

Download citation

Publish with us

Policies and ethics