Skip to main content

Some Historical Elements of Microbial Ecology

  • Chapter
  • First Online:
Environmental Microbiology: Fundamentals and Applications

Abstract

We present briefly, first, the history of the discovery of microorganisms and particularly bacteria with the pioneering works of Antoni van Leeuwenhoek, Louis Pasteur, and Robert Koch, essentially. In a second and more detailed part, the history of microbial ecology is presented with particularly the very important work of Sergei Winogradsky and his discoveries of the main bacterial groups active in biogeochemical cycles. It is followed by a description of the major microbial ecologists who have been very active in promoting and developing microbial ecology throughout the world. Their role in the advances of microbial ecology is presented and discussed.

Coordinator

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    At the time of Pasteur, the name “virus” was given to all infectious agents, parasites, bacteria, or real viruses; the word virus derives from Latin and means poison.

References

  • Atlas R, Bartha R (1998) Microbial ecology, fundamental and applications, 4th edn. Addison Wesley Longman, Reading

    Google Scholar 

  • Beijerinck MW (1888) Die Bacterien der Papilionaceen-Knöllchen. Bot Ztg 46:725–735

    Google Scholar 

  • Beijerinck WM (1895) Über Spirillum desulfuricans als Ursache von Sulfat-reduktion. Zentralbl Bakteriol Abt L 1–9:104–114

    Google Scholar 

  • Bianchi M, Marty D, Bertrand J-C, Caumette P, Gauthier M (1989) Micro-organismes dans les écosystèmes océaniques. Masson, Paris

    Google Scholar 

  • Cagniard de La Tour C (1838) Mémoire sur la fermentation vineuse. Ann Chim Phys 68:206–222

    Google Scholar 

  • Cananaugh CM, Gardiner SL, Jones ML, Jannasch HW, Waterbury JB (1981) Procaryotics cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science 213:340–341

    Article  Google Scholar 

  • Chaiyanan S, Huq A, Maugel T, Colwell RR (2001) Viability of the nonculturable Vibrio cholerae O1 and O139. Syst Appl Microbiol 24:331–341

    Article  CAS  PubMed  Google Scholar 

  • Cohen Y, Krumbein WE, Shilo M (1977) Solar Lake (Sinai). Distribution of photosynthetic microorganisms. Limnol Oceanogr 22:609–620

    Article  CAS  Google Scholar 

  • Cohn F (1876) Untersuchungen uber Bakterien IV. Beitrage zur Biologie der Bacillen. Beitr Biol Pflanzen 2:249–276

    Google Scholar 

  • Colwell RR, Morita RY (1974) The effects of the ocean environment on microbial activities. University Park Press, Baltimore

    Google Scholar 

  • d’Hérelle F (1921) Le Bactériophage: Son rôle dans l’Immunité. Masson, Paris, 227 p

    Google Scholar 

  • de Saussure NT (1804) Recherches chimiques sur la végétation. Vve Nyon, Paris, 327 p

    Google Scholar 

  • Degrange V, Bardin R (1995) Detection and counting of Nitrobacter populations in soil by PCR. Appl Environ Microbiol 61:2093–2098

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deherain PP (1897) La réduction des nitrates dans la terre arable. C R Acad Sci Paris 124:269–273

    Google Scholar 

  • Diem H, Gauthier D, Dommergues Y (1983) An effective strain of Frankia from Casuarina sp. Can J Bot 61:2815–2821

    Article  Google Scholar 

  • Dobell C (1923) A protozoological bicentenary: Antony van Leeuwenhoek (1632–1723) and Louis Joblot (1645–1723). Parasitology 15:308–319

    Article  Google Scholar 

  • Dommergues Y, Mangenot F (1970) Écologie microbienne du sol. Masson, Paris

    Google Scholar 

  • Ducluzeau R, Raibaud P (1979) Écologie microbienne du tube digestif. INRA and Masson, Paris

    Google Scholar 

  • Fenchel T, Blackburn H (1979) Bacteria and mineral cycling. Academic Press, London

    Google Scholar 

  • Fleming A (1929) On the antibacterial action of cultures of a Penicillium, with special reference to their use in the isolation of B. influenzae. Br J Exp Pathol 10:226–236

    CAS  PubMed Central  Google Scholar 

  • Haeckel E (1866) Generelle Morphologie. I: Allgemeine Anatomie der Organismen. II: Allgemeine Entwickelungsgeschichte der Organismen. Reimer, Berlin

    Book  Google Scholar 

  • Hungate R (1966) The rumen and its microbes. Academic Press, New York

    Google Scholar 

  • Ivanovski D, Polovtsev VV (1890) Die Pockenkrankheit der Tabakspflanze. Mem Acad Sci St Petersbourg Ser 7(37):1–24

    Google Scholar 

  • Jannasch HW, Taylor CD (1984) Deep sea microbiology. Annu Rev Microbiol 38:487–514

    Article  CAS  PubMed  Google Scholar 

  • Jannasch HW, Wirsen CO, Winget CL (1973) A bacteriological pressure-retaining deep-sea sampler and culture vessel. Deep-Sea Res 20:661–664

    Google Scholar 

  • Jannasch HW, Wirsen CO, Taylor CD (1982) Deep sea bacteria: isolation in the absence of decompression. Science 216:1315–1317

    Article  CAS  PubMed  Google Scholar 

  • Jannash HW, Wirsen CO, Doherty KM (1996) A pressurized chemostat for the study of marine barophile and oligotrophic bacteria. Appl Environ Microbiol 62:1593–1596

    Google Scholar 

  • Jørgensen BB, Fenchel T (1974) The sulfur cycle of a marine sediment model system. Mar Biol 24:189–201

    Article  Google Scholar 

  • Jørgensen BB, Revsbech NP, Blackburn TH, Cohen Y (1979) Diurnal cycles of oxygen and sulphide microgradients and microbial photosynthesis in a cyanobacterial mat. Appl Environ Microbiol 38:46–58

    PubMed Central  PubMed  Google Scholar 

  • Kaserer H (1906) Die oxydation des Wasserstoffs durch Mikroorganismen. Zentralbl Bakteriol II Abt 16:681–696

    CAS  Google Scholar 

  • Koch R (1882) Die Aetiologie der Tuberculose. Berl Klin Wochenschr 19:221–230

    Google Scholar 

  • Koch R (1883) Ueber die neuen Untersuchungsmethoden zum Nachweis der Mikroorganismen in Boden, Luft und Wasser. Aerztliches Vereinsblatt für Dtschl 237:244–250

    Google Scholar 

  • Kützing FT (1837) Microscopische Untersuchungen über die Hefe und Essigmutter, nebst mehreren andern dazu gehörigen vegetabilischen Gebilden. J Prakt Chem 11:385–409

    Article  Google Scholar 

  • Le Coustumier A (2010) Louis Joblot et ses microscopes. Bull Soc F Microbiol 25:89–100

    Google Scholar 

  • Le Gall J, Fauque G (1988) Dissimilatory reduction of sulfur compounds. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 587–640

    Google Scholar 

  • Lechevalier H (1976) Louis Joblot and his microscopes. Bacteriol Rev 40:241–258

    CAS  PubMed Central  PubMed  Google Scholar 

  • Madigan M, Martinko JM, Stahl D, Clark DP (2010) Brock: biology of Microorganisms, 13th edn. Pearson Benjamin-Cummings, San Francisco

    Google Scholar 

  • Morita R (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pasteur L (1857) Mémoire sur la fermentation alcoolique. C R Acad Sci Paris 45:1032–1036

    Google Scholar 

  • Pasteur L (1860) Mémoire sur la fermentation alcoolique. Ann Chim Phys 58:323–426

    Google Scholar 

  • Pfennig N, Widdel F, Trüper HG (1981) The dissimilatory sulfate-reducing bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin, pp 926–940

    Chapter  Google Scholar 

  • Pochon J, De Barjac H (1958) Traité de microbiologie du sol. Dunod, Paris

    Google Scholar 

  • Pochon J, Tardieux P (1962) Techniques d’analyses en microbiologie du sol. éditions de la Tourelle, Saint Mandé

    Google Scholar 

  • Postgate J (1998) Nitrogen fixation, 3rd edn. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Rous P (1911) A sarcoma of the fowl transmissible by an agent separable from the tumor cells. J Exp Med 13:397–411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schloesing J, Muntz A (1877) Sur la Nitrification par les Ferments Organisés. C R Acad Sci Paris 84:301–303

    Google Scholar 

  • Schwann T (1837) Vorläufige Mittheilung, bettreffend Versuche über die Weingährung und Fäulniss. Ann Chim Phys 41:184–193

    Article  Google Scholar 

  • Semmelweis IP (1861) Die Aetiologie der Begriff und die Prophylaxis des Kindbettfiebers. Hartleben, Pest, Vienna/Leipzig

    Google Scholar 

  • Senez J (1968) Microbiologie générale. Doin, Paris

    Google Scholar 

  • Seow KT, Meurer G, Gerlitz M, Wendt-Pienkowski E, Hutchinson CR, Davies J (1997) A study of iterative type II polyketide synthases, using bacterial genes cloned from soil DNA: a means to access and use genes from uncultured microorganisms. J Bacteriol 179:7360–7368

    CAS  PubMed Central  PubMed  Google Scholar 

  • Söhngen NL (1906) Über Bakterien, welche Methan als Kohlenstoffnahrung und Energiequelle gebrauchen. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt II 15:513–517

    Google Scholar 

  • Stanier RY, Aldelberg EA, Ingraham J-L (1976) The microbial world. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Stanier RY, Pfennig N, Trüper HG (1981) Introduction to the phototrophic prokaryotes. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin, pp 197–211

    Chapter  Google Scholar 

  • Tyndall J (1877) On heat as a germicide when discontinuously applied. Proc R Soc Lond 25:569

    Article  Google Scholar 

  • van Gemerden H, Tughan R, de Wit R, Herbert A (1989) Laminated microbial ecosystems on sheltered beaches in Scapa Flow, Orkney Islands. FEMS Microbiol Ecol 62:87–102

    Article  Google Scholar 

  • Winogradsky SN (1887) Über Schwefelbakterien. Bot Ztg 45:489–600

    Google Scholar 

  • Winogradsky SN (1888) Über Eisenbakterien. Bot Ztg 46:261–270

    Google Scholar 

  • Winogradsky SN (1890) Sur les organismes de la nitrification. C R Acad Sci Paris 60:1013–1016

    Google Scholar 

  • Winogradsky S (1949) Microbiologie du sol. Problèmes et méthodes. Masson, Paris

    Google Scholar 

  • ZoBell CE (1946) Marine microbiology. Chronica Botanica Compagny, Waltman

    Google Scholar 

  • ZoBell CE (1950) Assimilation of hydrocarbons by microorganisms. In: Nord FF (ed) Advances in enzymology. Interscience Publishers, New York/London, pp 443–486

    Google Scholar 

  • ZoBell CE (1952) Bacterial life at the bottom of the Philippine Trench. Science 115:507–508

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Caumette .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Caumette, P., Bertrand, JC., Normand, P. (2015). Some Historical Elements of Microbial Ecology. In: Bertrand, JC., Caumette, P., Lebaron, P., Matheron, R., Normand, P., Sime-Ngando, T. (eds) Environmental Microbiology: Fundamentals and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9118-2_2

Download citation

Publish with us

Policies and ethics