Skip to main content
  • 1127 Accesses

Abstract

With the improvement of protocols for the assembly of transcriptional parts, synthetic biological devices can now be reliably assembled based on a design. The standardization of the parts open up the way for in silico design tools that improve the construct and optimize devices with respect to given formal specifications. The simplest such optimization is the selection of kinetic parameters and protein abundances such that the specified constraints are robustly satisfied. In this chapter we address the problem of determining parameter values that fulfill specifications expressed in terms of a functional on the trajectories of a dynamical model. We solve this inverse problem by linearizing the forward operator that maps parameter sets to specifications, and then inverting it locally. This approach has two advantages over brute-force random sampling. First, the linearization approach allows us to map back intervals instead of points and second, every obtained value in the parameter region is satisfying the specifications by construction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nandagopal N, Elowitz MB (2011) Synthetic biology: integrated gene circuits. Science 333:1244–1248

    Article  CAS  PubMed  Google Scholar 

  2. Lu TK, Khalil AS, Collins JJ (2009) Next-generation synthetic gene networks. Nat Biotechnol 27:1139–1150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Bowsher CG, Swain PS (2012) Identifying sources of variation and the flow of information in biochemical networks. Proc Natl Acad Sci USA 109:E1320–E1328

    Google Scholar 

  4. Hilfinger A, Paulsson J (2011) Separating intrinsic from extrinsic fluctuations in dynamic biological systems. Proc Natl Acad Sci USA 108:15004–15009

    Google Scholar 

  5. Zechner C, Ruess J, Krenn P, Pelet S, Peter M et al (2012) Moment-based inference predicts bimodality in transient gene expression. Proc Natl Acad Sci USA 109:8340–8345

    Google Scholar 

  6. Bleris L, Xie Z, Glass D, Adadey A, Sontag E et al (2011) Synthetic incoherent feedforward circuits show adaptation to the amount of their genetic template. Mol Syst Biol 7:519

    Article  PubMed Central  PubMed  Google Scholar 

  7. Miller M, Hafner M, Sontag E, Davidsohn N, Subramanian S et al (2012) Modular design of artificial tissue homeostasis: Robust control through synthetic cellular heterogeneity. PLoS Comput Biol 8:e1002579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Baier C, Katoen JP (2008) Principles of model checking. The MIT Press, London

    Google Scholar 

  9. Rizk A, Batt G, Fages F, Soliman S (2011) Continuous valuations of temporal logic specifications with applications to parameter optimization and robustness measures. Theor Comput Sci 412:2827–2839

    Article  Google Scholar 

  10. Engl H, Hanke M, Neubauer A (1996) Regularization of inverse problems (Mathematics and its applications). Kluwer, Dordrecht

    Google Scholar 

  11. Christian HP (1998) Rank-Deficient and Discrete Ill-Posed Problems. SIAM, 51(3):455–500

    Google Scholar 

  12. Lu J, Engl HW, Schuster P (2006) Inverse bifurcation analysis: application to simple gene systems. Algorithms Mol Biol 1:11

    Article  PubMed Central  PubMed  Google Scholar 

  13. Engl HW, Flamm C, Kügler P, Lu J, Müller S et al (2009) Inverse problems in systems biology. Inverse Prob 25:123014

    Article  Google Scholar 

  14. Lu J, August E, Koeppl H (2012) Inverse problems from biomedicine : inference of putative disease mechanisms and robust therapeutic strategies. J Math Biol 67(1):143–68

    Google Scholar 

  15. August E, Parker KH, Barahona M (2007) A dynamical model of lipoprotein metabolism. Bull Math Biol 69:1233–1254

    Article  CAS  PubMed  Google Scholar 

  16. Hafner M, Koeppl H, Hasler M, Wagner A (2009) ‘Glocal’ robustness analysis and model discrimination for circadian oscillators. PLoS Comput Biol 5:e1000534

    Article  PubMed Central  PubMed  Google Scholar 

  17. Zamora-Sillero E, Hafner M, Ibig A, Stelling J, Wagner A (2011) Efficient characterization of high-dimensional parameter spaces for systems biology. BMC Syst Biol 5:142

    Article  PubMed Central  PubMed  Google Scholar 

  18. Vempala S (2005) Geometric random walks: a survey. Comput Geom 52:573–612

    Google Scholar 

  19. Hatzimanikatis V, Bailey JE (1996) MCA has more to say. J Theor Biol 182:233–242

    Article  CAS  PubMed  Google Scholar 

  20. Ingalls BP, Sauro HM (2003) Sensitivity analysis of stoichiometric networks: an extension of metabolic control analysis to non-steady state trajectories. J Theor Biol 222:23–36

    Article  PubMed  Google Scholar 

  21. Hooshangi S, Thiberge S, Weiss R (2005) Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. Proc Natl Acad Sci USA 102:3581–3586

    Google Scholar 

Download references

Acknowledgments

H.K. acknowledges the support from the Swiss National Science Foundation (SNSF) grant number PP00P2_128503.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Koeppl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Koeppl, H., Hafner, M., Lu, J. (2014). From Specification to Parameters: A Linearization Approach. In: Kulkarni, V., Stan, GB., Raman, K. (eds) A Systems Theoretic Approach to Systems and Synthetic Biology II: Analysis and Design of Cellular Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9047-5_10

Download citation

Publish with us

Policies and ethics