Skip to main content

Abstract

The theory of complex networks plays an important role in Systems Biology. There are extensive discussions in literature about biological networks bearing the knowledge of function and possessing the key to “emergent properties” of the system. One would naturally assume that many network metrics need to be thoroughly studied to extract maximum information about the system. Interestingly however, most network papers discuss at most two three metrics at a time. What justifies the choice of a few metrics, in place of a comprehensive suite of network metrics? Is there any scientific basis of the choice of metrics or are they invariably handpicked? More importantly, do these few handpicked metrics carry the maximum information extractable about the biological system? This chapter discusses how any why the study of multiple metrics is necessary in biological networks and systems biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albert R, Barabasi A-L (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–97

    Article  Google Scholar 

  2. Newman MEJ (2010) Networks: an introduction. Oxford University Press, Oxford, UK

    Book  Google Scholar 

  3. Albert R, Jeong H, Barabasi A-L (2000) Error and attack tolerance of complex networks. Nature 406:378–382

    Article  CAS  PubMed  Google Scholar 

  4. Jeong H, Mason SP, Barabasi A-L, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411:41–42

    Google Scholar 

  5. Varma A, Palsson BO (1994) Metabolic flux balancing basic concepts, scientific and practical use. Biotechnology 12:994–998

    Article  CAS  Google Scholar 

  6. Edwards JS, Palsson BO (2000) The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc Natl Acad Sci USA 97:55285533

    Google Scholar 

  7. Segre D, Vitkup D, Church GM (2002) Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci USA 99:1511215117

    Article  Google Scholar 

  8. Stelling J, Klamt S, Bettenbrock K, Schuster S, Gilles ED (2002) Metabolic network structure determines key aspects of functionality and regulation. Nature 420:190–193

    Article  CAS  PubMed  Google Scholar 

  9. Wunderlich Z, Mirny LA (2006) Using the topology of metabolic networks to predict viability of mutant strains. Biophys J 91:2304–2311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Clauset A, Shalizi CR, Newman MEJ (2009) Power-law distributions in empirical data. SIAM Rev 51:661–703

    Article  Google Scholar 

  11. Doyle JC et al (2005) The robust yet fragile nature of the Internet. Proc Natl Acad Sci USA 102:14497–14502

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Wasserman S, Faust K (1994) Social network analysis. Cambridge University Press, Cambridge, UK

    Google Scholar 

  13. Freeman LC (1977) A set of measures of centrality based on betweenness. Sociometry 40:35–41

    Google Scholar 

  14. Guimera R, Mossa S, Turtschi A, Amaral LAN (2005) The worldwide air transportation network: anomalous centrality, community structure, and cities’ global roles. Proc Natl Acad Sci USA 102:7794–7799

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Wuellner DR, Roy S, D’Souza RM (2010) Resilience and rewiring of the passenger airline networks in the United States. Phys Rev E 82:056101

    Article  Google Scholar 

  16. Dunn R, Dudbridge F, Sanderson CM (2005) The Use of Edge-Betweenness Clustering to Investigate Biological Function in Protein Interaction Networks. BMC Bioinform 6:39

    Article  Google Scholar 

  17. Hahn MW, Kern AD (2005) Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks. Mol Biol Evol 22:803–806

    Article  CAS  PubMed  Google Scholar 

  18. Hegde SR, Manimaran P, Mande SC (2008) Dynamic changes in protein functional linkage networks revealed by integration with gene expression data. PLoS Comput Biol 4(11):e1000237

    Article  PubMed Central  PubMed  Google Scholar 

  19. Joy MP, Brock A, Ingber DE (2005) Huang S high-betweenness proteins in the yeast protein interaction network. J Biomed Biotech 2:96–103

    Article  Google Scholar 

  20. Liu J et al (2009) Analysis of drosophila segmentation network identifies a JNK pathway factor overexpressed in kidney cancer. Science 323:1218–1222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Liu YY, Slotine J-J, Barabasi A-L (2011) Controllability of complex networks. Nature 473:167–173

    Google Scholar 

  22. Banerjee SJ, Roy S (2012) Key to network controllability arxiv:1209.3737

    Google Scholar 

  23. Newman MEJ (2002) Assortative mixing in networks. Phys Rev Lett 89:208701

    Article  CAS  PubMed  Google Scholar 

  24. Reynolds-Feighan A (1998) The impact of U.S. airline deregulation on airport traffic patterns. Geogr Anal 30:234

    Article  Google Scholar 

  25. Sen A (1973) On economic inequality. Clarendon Press, Oxford, UK

    Book  Google Scholar 

  26. Bagler G, Sinha S (2007) Assortative mixing in protein contact networks and protein folding kinetics. Bioinformatics 23:1760–1767

    Article  CAS  PubMed  Google Scholar 

  27. Pechenick DA, Payne JL, Moore JH (2012) The influence of assortativity on the robustness of signal-integration logic in gene regulatory networks. J Theo Biol 296:21–32

    Article  CAS  Google Scholar 

  28. Colizza V, Flammini A, Serrano MA, Vespignani A (2006) Detecting rich-club ordering in complex networks. Nat Phys 2:110115

    Article  Google Scholar 

  29. Zhou S, Mondragron RJ (2004) The rich-club phenomenon in the internet topology. IEEE Commun Lett 8:180

    Article  Google Scholar 

  30. van den Heuvel MP, Sporns O (2011) Rich-club organization of the human connectome. J Neurosci 31:15775–15786

    Google Scholar 

  31. Banerjee A, Jost J (2009) Graph spectra as a systematic tool in computational biology. Discrete Appl Math 157:2425–2431

    Article  Google Scholar 

  32. Perkins AD, Langston MA (2009) Threshold selection in gene co-expression networks using spectral graph theory techniques. BMC Bioinform 10(Suppl 11):S4

    Article  Google Scholar 

  33. Newman MEJ (2008) Mathematics of networks. In: Blume LE, Durlauf SN (ed) The new palgrave encyclopedia of economics, 2’nd edn. Palgrave Macmillan, Basingstoke

    Google Scholar 

  34. Costa LDF, Rodrigues FA, Travieso G, Boas PRV (2007) Characterization of complex networks: a survey of measurements. Adv Phys 56:167242

    Google Scholar 

  35. Estrada E, Rodr guez-Vel azquez JA (2005) Spectral measures of bipartivity in complex networks. Phys Rev E 72:046105

    Google Scholar 

  36. Roy S (2012) Systems biology beyond degree, hubs and scale-free networks. Syst Synth Biol 6:31–34. doi:10.1007/s11693-012-9094-y

  37. Filkov V, Saul ZM, Roy S, D’Souza RM, Devanbu PT (2009) Modeling and verifying a broad array of network properties. EPL (Europhys Lett) 86:28003

    Article  Google Scholar 

  38. Roy S, Filkov V (2009), Strong associations between microbe phenotypes and their network architecture. Phys Rev E 80: 040902 (R).

    Google Scholar 

  39. Jolliffe IT (2002) Principal component analysis, 2’nd edition. Springer-Verlag, New York

    Google Scholar 

  40. Kashtan N, Alon U (2005) Proc Natl Acad Sci USA 102:13773

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Davidson EH (2006) The regulatory genome: gene regulatory networks in development and evolution. Academic Press, Elsevier, San Diego

    Google Scholar 

  42. Gamma E et al (1995) Design patterns: elements of reusable object-oriented software. Addison-Wesley Longman Publishing Co., Boston

    Google Scholar 

  43. Barabasi A-L, Albert R (1999) Emergence of scaling in random networks. Science 286:509

    Article  PubMed  Google Scholar 

  44. Agarwal S, Villar G, Jones NS (2010) High throughput network analysis. In: Proceedings of the workshop on analysis of complex networks (ACNE), European conference on machine learning and principles and practise of knowledge discovery in databases (ECML, PKDD). Barcelona, Spain, pp 13–18

    Google Scholar 

  45. Bounova G, de Weck O (2012) Overview of metrics and their correlation patterns for multiple-metric topology analysis on heterogeneous graph ensembles. Phys Rev E 85:016117

    Article  Google Scholar 

  46. Villar G, Agarwal S, Jones NS (2010) High throughput network analysis in machine learning in systems biology (MLSB). In: Proceedings of the 4th international workshop. Edinburgh, Scotland, pp 5–7

    Google Scholar 

  47. Overbeek et al (2000) Nucl Acids Res 28:123

    Google Scholar 

  48. Leicht EA, Newman MEJ (2008) Phys Rev Lett 100:118703

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumen Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Roy, S. (2014). Networks, Metrics, and Systems Biology. In: Kulkarni, V., Stan, GB., Raman, K. (eds) A Systems Theoretic Approach to Systems and Synthetic Biology I: Models and System Characterizations. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9041-3_8

Download citation

Publish with us

Policies and ethics