Skip to main content

Exploiting Celecoxib in Cancer Therapy

  • Chapter
  • First Online:
Mitochondria: The Anti- cancer Target for the Third Millennium

Abstract

Numerous studies demonstrate that the non-steroidal anti-inflammatory drug (NSAID) Celecoxib is an attractive lead compound for cancer therapy: Epidemiological studies suggest a lower incidence of colonic polyps in patients with the hereditary familiary adenomatous polyposis (FAP) syndrome and a decreased risk for colorectal, skin and other cancers upon continuous uptake of Celecoxib or related compounds. Moreover, preclinical investigations demonstrate promising anti-tumour activity of Celecoxib in a variety of human tumours. Celecoxib not only interferes with tumour initiation and tumour cell growth in vitro and in vivo but also increases the sensitivity of tumour cells to chemotherapy, radiotherapy, or chemoradiotherapy.

Cell cycle arrest, induction of apoptosis and anti-angiogenic effects contribute to the antineoplastic effects of Celecoxib. This chapter will focus on the molecular mechanisms of Celecoxib-induced apoptosis, in particular the ability of Celecoxib to activate the mitochondrial death pathway and to interfere with specific members of the Bcl-2 protein family and the apoptosis regulator Survivin. Moreover, the role of cyclooxygenase-2 (COX-2) in the regulation of Celecoxib-induced apoptosis will be discussed. Finally, some clinical aspects of the use of Celecoxib in cancer therapy will be highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JM, Cory S (2007) The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26:1324–1337

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alloza I, Baxter A, Chen Q, Matthiesen R, Vandenbroeck K (2006) Celecoxib inhibits interleukin-12 alphabeta and beta2 folding and secretion by a novel COX2-independent mechanism involving chaperones of the endoplasmic reticulum. Mol Pharmacol 69:1579–1587

    CAS  PubMed  Google Scholar 

  • Altieri DC (2008) New wirings in the survivin networks. Oncogene 27:6276–6284

    CAS  PubMed Central  PubMed  Google Scholar 

  • Altorki NK, Keresztes RS, Port JL, Libby DM, Korst RJ, Flieder DB, Ferrara CA, Yankelevitz DF, Subbaramaiah K, Pasmantier MW, Dannenberg AJ (2003) Celecoxib, a selective cyclo-oxygenase-2 inhibitor, enhances the response to preoperative paclitaxel and carboplatin in early-stage non-small-cell lung cancer. J Clin Oncol 21:2645–2650

    CAS  PubMed  Google Scholar 

  • Altorki NK, Christos P, Port JL, Lee PC, Mirza F, Spinelli C, Keresztes R, Beneck D, Paul S, Stiles BM, Zhang Y, Schrump DS (2011) Preoperative taxane-based chemotherapy and celecoxib for carcinoma of the esophagus and gastroesophageal junction: results of a phase 2 trial. J Thorac Oncol 6(2011):1121–1127

    PubMed  Google Scholar 

  • Amano H, Hayashi I, Endo H, Kitasato H, Yamashina S, Maruyama T, Kobayashi M, Satoh K, Narita M, Sugimoto Y, Murata T, Yoshimura H, Narumiya S, Majima M (2003) Host prostaglandin E(2)-EP3 signaling regulates tumor-associated angiogenesis and tumor growth. J Exp Med 197:221–232

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ambrosini G, Adida C, Altieri DC (1997) A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 3:917–921

    CAS  PubMed  Google Scholar 

  • Antonarakis ES, Heath EI, Walczak JR, Nelson WG, Fedor H, De Marzo AM, Zahurak ML, Piantadosi S, Dannenberg AJ, Gurganus RT, Baker SD, Parnes HL, DeWeese TL, Partin AW, Carducci MA (2009) Phase II, randomized, placebo-controlled trial of neoadjuvant celecoxib in men with clinically localized prostate cancer: evaluation of drug-specific biomarkers. J Clin Oncol 27(30):4986–4993

    Google Scholar 

  • Arber N, Eagle CJ, Spicak J, Racz I, Dite P, Hajer J, Zavoral M, Lechuga MJ, Gerletti P, Tang J, Rosenstein RB, Macdonald K, Bhadra P, Fowler R, Wittes J, Zauber AG, Solomon SD, Levin B (2006) Celecoxib for the prevention of colorectal adenomatous polyps. N Engl J Med 355:885–895

    CAS  PubMed  Google Scholar 

  • Arber N, Spicak J, Racz I, Zavoral M, Breazna A, Gerletti P, Lechuga MJ, Collins N, Rosenstein RB, Eagle CJ, Levin B (2011) Five-year analysis of the prevention of colorectal sporadic adenomatous polyps trial. Am J Gastroenterol 106:1135–1146

    PubMed  Google Scholar 

  • Arico S, Pattingre S, Bauvy C, Gane P, Barbat A, Codogno P, Ogier-Denis E (2002) Celecoxib induces apoptosis by inhibiting 3-phosphoinositide-dependent protein kinase-1 activity in the human colon cancer HT-29 cell line. J Biol Chem 277:27613–27621

    CAS  PubMed  Google Scholar 

  • Bai XM, Jiang H, Ding JX, Peng T, Ma J, Wang YH, Zhang L, Zhang H, Leng J (2010) Prostaglandin E2 upregulates survivin expression via the EP1 receptor in hepatocellular carcinoma cells. Life Sci 86:214–223

    CAS  PubMed  Google Scholar 

  • Basu GD, Pathangey LB, Tinder TL, Gendler SJ, Mukherjee P (2005) Mechanisms underlying the growth inhibitory effects of the cyclo-oxygenase-2 inhibitor celecoxib in human breast cancer cells. Breast Cancer Res 7:R422–R435

    CAS  PubMed Central  PubMed  Google Scholar 

  • Belka C, Rudner J, Wesselborg S, Stepczynska A, Marini P, Lepple-Wienhues A, Faltin H, Bamberg M, Budach W, Schulze-Osthoff K (2000) Differential role of caspase-8 and BID activation during radiation- and CD95-induced apoptosis. Oncogene 19:1181–1190

    CAS  PubMed  Google Scholar 

  • Bosch R, Dieguez-Gonzalez R, Cespedes MV, Parreno M, Pavon MA, Granena A, Sierra J, Mangues R, Casanova I (2011) A novel inhibitor of focal adhesion signaling induces caspase-independent cell death in diffuse large B-cell lymphoma. Blood 118:4411–4420

    CAS  PubMed  Google Scholar 

  • Bresalier RS, Sandler RS, Quan H, Bolognese JA, Oxenius B, Horgan K, Lines C, Riddell R, Morton D, Lanas A, Konstam MA, Baron JA (2005) Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N Engl J Med 352:1092–1102

    CAS  PubMed  Google Scholar 

  • Brown JR, DuBois RN (2005) COX-2: a molecular target for colorectal cancer prevention. J Clin Oncol 23:2840–2855

    CAS  PubMed  Google Scholar 

  • Bundred NJ, Barnes NL (2005) Potential use of COX-2-aromatase inhibitor combinations in breast cancer. Br J Cancer 93:S10–S15

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bundred NJ, Cramer A, Morris J, Renshaw L, Cheung KL, Flint P, Johnson R, Young O, Landberg G, Grassby S, Turner L, Baildam A, Barr L, Dixon JM (2010) Cyclooxygenase-2 inhibition does not improve the reduction in ductal carcinoma in situ proliferation with aromatase inhibitor therapy: results of the ERISAC randomized placebo-controlled trial. Clin Cancer Res 16:1605–1612

    CAS  PubMed  Google Scholar 

  • Catalano A, Graciotti L, Rinaldi L, Raffaelli G, Rodilossi S, Betta P, Gianni W, Amoroso S, Procopio A (2004) Preclinical evaluation of the nonsteroidal anti-inflammatory agent celecoxib on malignant mesothelioma chemoprevention. Int J Cancer 109:322–328

    CAS  PubMed  Google Scholar 

  • Cerchietti LC, Bonomi MR, Navigante AH, Castro MA, Cabalar ME, Roth BM (2005) Phase I/II study of selective cyclooxygenase-2 inhibitor celecoxib as a radiation sensitizer in patients with unresectable brain metastases. J Neurooncol 71:73–81

    CAS  PubMed  Google Scholar 

  • Certo M, Del Gaizo Moore V, Nishino M, Wei G, Korsmeyer S, Armstrong SA, Letai A (2006) Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 9:351–365

    CAS  PubMed  Google Scholar 

  • Cervello M, Bachvarov D, Cusimano A, Sardina F, Azzolina A, Lampiasi N, Giannitrapani L, McCubrey JA, Montalto G (2011) COX-2-dependent and COX-2-independent mode of action of celecoxib in human liver cancer cells. OMICS 15:383–392

    CAS  PubMed  Google Scholar 

  • Chang SH, Liu CH, Conway R, Han DK, Nithipatikom K, Trifan OC, Lane TF, Hla T (2004) Role of prostaglandin E2-dependent angiogenic switch in cyclooxygenase 2-induced breast cancer progression. Proc Natl Acad Sci U S A 101:591–596

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen L, Willis SN, Wei A, Smith BJ, Fletcher JI, Hinds MG, Colman PM, Day CL, Adams JM, Huang DC (2005) Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 17:393–403

    CAS  PubMed  Google Scholar 

  • Chen JC, Chen Y, Su YH, Tseng SH (2007) Celecoxib increased expression of 14-3-3sigma and induced apoptosis of glioma cells. Anticancer Res 27:2547–2554

    CAS  PubMed  Google Scholar 

  • Chen S, Cao W, Yue P, Hao C, Khuri FR, Sun SY (2011) Celecoxib promotes c-FLIP degradation through Akt-independent inhibition of GSK3. Cancer Res 71:6270–6281

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chuang HC, Kardosh A, Gaffney KJ, Petasis NA, Schonthal AH (2008) COX-2 inhibition is neither necessary nor sufficient for celecoxib to suppress tumor cell proliferation and focus formation in vitro. Mol Cancer 7:38

    PubMed Central  PubMed  Google Scholar 

  • Chun KS, Langenbach R (2011) The prostaglandin E2 receptor, EP2, regulates survivin expression via an EGFR/STAT3 pathway in UVB-exposed mouse skin. Mol Carcinog 50:439–448

    CAS  PubMed  Google Scholar 

  • Cianchi F, Cortesini C, Magnelli L, Fanti E, Papucci L, Schiavone N, Messerini L, Vannacci A, Capaccioli S, Perna F, Lulli M, Fabbroni V, Perigli G, Bechi P, Masini E (2006) Inhibition of 5-lipoxygenase by MK886 augments the antitumor activity of celecoxib in human colon cancer cells. Mol Cancer Ther 5:2716–2726

    CAS  PubMed  Google Scholar 

  • Craig RW (2002) MCL1 provides a window on the role of the BCL2 family in cell proliferation, differentiation and tumorigenesis. Leukemia 16:444–454

    CAS  PubMed  Google Scholar 

  • Cuconati A, Mukherjee C, Perez D, White E (2003) DNA damage response and MCL-1 destruction initiate apoptosis in adenovirus-infected cells. Genes Dev 17:2922–2932

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dai H, Meng XW, Lee SH, Schneider PA, Kaufmann SH (2009) Context-dependent Bcl-2/Bak interactions regulate lymphoid cell apoptosis. J Biol Chem 284:18311–18322

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dandekar DS, Lopez M, Carey RI, Lokeshwar BL (2005) Cyclooxygenase-2 inhibitor celecoxib augments chemotherapeutic drug-induced apoptosis by enhancing activation of caspase-3 and -9 in prostate cancer cells. Int J Cancer 115:484–492

    CAS  PubMed  Google Scholar 

  • Dang CT, Dannenberg AJ, Subbaramaiah K, Dickler MN, Moasser MM, Seidman AD, D’Andrea GM, Theodoulou M, Panageas KS, Norton L, Hudis CA (2004) Phase II study of celecoxib and trastuzumab in metastatic breast cancer patients who have progressed after prior trastuzumab-based treatments. Clin Cancer Res 10:4062–4067

    CAS  PubMed  Google Scholar 

  • Davis TW, O’Neal JM, Pagel MD, Zweifel BS, Mehta PP, Heuvelman DM, Masferrer JL (2004) Synergy between celecoxib and radiotherapy results from inhibition of cyclooxygenase-2-derived prostaglandin E2, a survival factor for tumor and associated vasculature. Cancer Res 64:279–285

    CAS  PubMed  Google Scholar 

  • Dawson SJ, Michael M, Biagi J, Foo KF, Jefford M, Ngan SY, Leong T, Hui A, Milner AD, Thomas RJ, Zalcberg JR (2007) A phase I/II trial of celecoxib with chemotherapy and radiotherapy in the treatment of patients with locally advanced oesophageal cancer. Invest New Drugs 25:123–129

    CAS  PubMed  Google Scholar 

  • Debucquoy A, Roels S, Goethals L, Libbrecht L, Van Cutsem E, Geboes K, Penninckx F, D’Hoore A, McBride WH, Haustermans K (2009) Double blind randomized phase II study with radiation+5-fluorouracil+/-celecoxib for resectable rectal cancer. Radiother Oncol 93:273–278

    CAS  PubMed  Google Scholar 

  • Deckmann K, Rorsch F, Steri R, Schubert-Zsilavecz M, Geisslinger G, Grosch S (2010) Dimethylcelecoxib inhibits mPGES-1 promoter activity by influencing EGR1 and NF-kappaB. Biochem Pharmacol 80:1365–1372

    CAS  PubMed  Google Scholar 

  • Deckmann K, Rorsch F, Geisslinger G, Grosch S (2012) Dimethylcelecoxib induces an inhibitory complex consisting of HDAC1/NF-kappaB(p65)RelA leading to transcriptional downregulation of mPGES-1 and EGR1. Cell Signal 24:460–467

    CAS  PubMed  Google Scholar 

  • Del Bello B, Valentini MA, Zunino F, Comporti M, Maellaro E (2001) Cleavage of Bcl-2 in oxidant- and cisplatin-induced apoptosis of human melanoma cells. Oncogene 20:4591–4595

    PubMed  Google Scholar 

  • Denkert C, Winzer KJ, Hauptmann S (2004) Prognostic impact of cyclooxygenase-2 in breast cancer. Clin Breast Cancer 4:428–433

    CAS  PubMed  Google Scholar 

  • Ding H, Han C, Zhu J, Chen CS, D’Ambrosio SM (2005) Celecoxib derivatives induce apoptosis via the disruption of mitochondrial membrane potential and activation of caspase 9. Int J Cancer 113:803–810

    CAS  PubMed  Google Scholar 

  • Ding H, Han C, Guo D, Wang D, Duan W, Chen CS, D’Ambrosio SM (2008) Sensitivity to the non-COX inhibiting celecoxib derivative, OSU03012, is p21(WAF1/CIP1) dependent. Int J Cancer 123:2931–2938

    CAS  PubMed Central  PubMed  Google Scholar 

  • Du H, Li W, Wang Y, Chen S, Zhang Y (2011) Celecoxib induces cell apoptosis coupled with up-regulation of the expression of VEGF by a mechanism involving ER stress in human colorectal cancer cells. Oncol Rep 26:495–502

    CAS  PubMed  Google Scholar 

  • Elmets CA, Viner JL, Pentland AP, Cantrell W, Lin HY, Bailey H, Kang S, Linden KG, Heffernan M, Duvic M, Richmond E, Elewski BE, Umar A, Bell W, Gordon GB (2010) Chemoprevention of nonmelanoma skin cancer with celecoxib: a randomized, double-blind, placebo-controlled trial. J Natl Cancer Inst 102:1835–1844

    CAS  PubMed Central  PubMed  Google Scholar 

  • El-Rayes BF, Ali S, Sarkar FH, Philip PA (2004) Cyclooxygenase-2-dependent and -independent effects of celecoxib in pancreatic cancer cell lines. Mol Cancer Ther 3:1421–1426

    CAS  PubMed  Google Scholar 

  • Fantappie O, Solazzo M, Lasagna N, Platini F, Tessitore L, Mazzanti R (2007) P-glycoprotein mediates celecoxib-induced apoptosis in multiple drug-resistant cell lines. Cancer Res 67:4915–4923

    CAS  PubMed  Google Scholar 

  • Ferrandina G, Lauriola L, Distefano MG, Zannoni GF, Gessi M, Legge F, Maggiano N, Mancuso S, Capelli A, Scambia G, Ranelletti FO (2002) Increased cyclooxygenase-2 expression is associated with chemotherapy resistance and poor survival in cervical cancer patients. J Clin Oncol 20:973–981

    CAS  PubMed  Google Scholar 

  • Ferrario A, Lim S, Xu F, Luna M, Gaffney KJ, Petasis NA, Schonthal AH, Gomer CJ (2011) Enhancement of photodynamic therapy by 2,5-dimethyl celecoxib, a non-cyclooxygenase-2 inhibitor analog of celecoxib. Cancer Lett 304:33–40

    CAS  PubMed  Google Scholar 

  • Fitzgerald GA (2004) Coxibs and cardiovascular disease. N Engl J Med 351:1709–1711

    CAS  PubMed  Google Scholar 

  • Fukada K, Takahashi-Yanaga F, Sakoguchi-Okada N, Shiraishi F, Miwa Y, Morimoto S, Sasaguri T (2007) Celecoxib induces apoptosis by inhibiting the expression of survivin in HeLa cells. Biochem Biophys Res Commun 357:1166–1171

    CAS  PubMed  Google Scholar 

  • Gaiser T, Becker MR, Habel A, Reuss DE, Ehemann V, Rami A, Siegelin MD (2008) TRAIL-mediated apoptosis in malignant glioma cells is augmented by celecoxib through proteasomal degradation of survivin. Neurosci Lett 442:109–113

    CAS  PubMed  Google Scholar 

  • Ganswindt U, Budach W, Jendrossek V, Bamberg M, Belka C (2006) Combination of celecoxib with percutaneous radiotherapy in patients with localised prostate cancer – a phase I study. Radiat Oncol 1:9

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gao M, Yeh PY, Lu YS, Hsu CH, Chen KF, Lee WC, Feng WC, Chen CS, Kuo ML, Cheng AL (2008) OSU-03012, a novel celecoxib derivative, induces reactive oxygen species-related autophagy in hepatocellular carcinoma. Cancer Res 68:9348–9357

    CAS  PubMed  Google Scholar 

  • Gatenby RA, Gillies RJ (2008) A microenvironmental model of carcinogenesis. Nat Rev Cancer 8:56–61

    CAS  PubMed  Google Scholar 

  • Ghosh N, Chaki R, Mandal V, Mandal SC (2010) COX-2 as a target for cancer chemotherapy. Pharmacol Rep 62:233–244

    CAS  PubMed  Google Scholar 

  • Groen HJ, Sietsma H, Vincent A, Hochstenbag MM, van Putten JW, van den Berg A, Dalesio O, Biesma B, Smit HJ, Termeer A, Hiltermann TJ, van den Borne BE, Schramel FM (2011) Randomized, placebo-controlled phase III study of docetaxel plus carboplatin with celecoxib and cyclooxygenase-2 expression as a biomarker for patients with advanced non-small-cell lung cancer: the NVALT-4 study. J Clin Oncol 29:4320–4326

    CAS  PubMed  Google Scholar 

  • Grosch S, Tegeder I, Niederberger E, Brautigam L, Geisslinger G (2001) COX-2 independent induction of cell cycle arrest and apoptosis in colon cancer cells by the selective COX-2 inhibitor celecoxib. Faseb J 15:2742–2744

    CAS  PubMed  Google Scholar 

  • Grosch S, Maier TJ, Schiffmann S, Geisslinger G (2006) Cyclooxygenase-2 (COX-2)-independent anticarcinogenic effects of selective COX-2 inhibitors. J Natl Cancer Inst 98:736–747

    PubMed  Google Scholar 

  • Gupta S, Srivastava M, Ahmad N, Bostwick DG, Mukhtar H (2000) Over-expression of cyclooxygenase-2 in human prostate adenocarcinoma. Prostate 42:73–78

    CAS  PubMed  Google Scholar 

  • Han J, Goldstein LA, Gastman BR, Rabinowich H (2006) Interrelated roles for Mcl-1 and BIM in regulation of TRAIL-mediated mitochondrial apoptosis. J Biol Chem 281:10153–10163

    CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    CAS  PubMed  Google Scholar 

  • Harris RE, Beebe-Donk J, Alshafie GA (2007) Cancer chemoprevention by cyclooxygenase 2 (COX-2) blockade: results of case control studies. Subcell Biochem 42:193–212

    PubMed  Google Scholar 

  • Heath EI, Canto MI, Piantadosi S, Montgomery E, Weinstein WM, Herman JG, Dannenberg AJ, Yang VW, Shar AO, Hawk E, Forastiere AA (2007) Secondary chemoprevention of Barrett’s esophagus with celecoxib: results of a randomized trial. J Natl Cancer Inst 99:545–557

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hemmati PG, Guner D, Gillissen B, Wendt J, von Haefen C, Chinnadurai G, Dorken B, Daniel PT (2006) Bak functionally complements for loss of Bax during p14ARF-induced mitochondrial apoptosis in human cancer cells. Oncogene 25:6582–6594

    CAS  PubMed  Google Scholar 

  • Hida T, Kozaki K, Muramatsu H, Masuda A, Shimizu S, Mitsudomi T, Sugiura T, Ogawa M, Takahashi T (2000) Cyclooxygenase-2 inhibitor induces apoptosis and enhances cytotoxicity of various anticancer agents in non-small cell lung cancer cell lines. Clin Cancer Res 6:2006–2011

    CAS  PubMed  Google Scholar 

  • Hsu AL, Ching TT, Wang DS, Song X, Rangnekar VM, Chen CS (2000) The cyclooxygenase-2 inhibitor celecoxib induces apoptosis by blocking Akt activation in human prostate cancer cells independently of Bcl-2. J Biol Chem 275:11397–11403

    CAS  PubMed  Google Scholar 

  • Huang S, Sinicrope FA (2008) BH3 mimetic ABT-737 potentiates TRAIL-mediated apoptotic signaling by unsequestering Bim and Bak in human pancreatic cancer cells. Cancer Res 68:2944–2951

    CAS  PubMed Central  PubMed  Google Scholar 

  • James ND, Sydes MR, Mason MD, Clarke NW, Anderson J, Dearnaley DP, Dwyer J, Jovic G, Ritchie AW, Russell JM, Sanders K, Thalmann GN, Bertelli G, Birtle AJ, O’Sullivan JM, Protheroe A, Sheehan D, Srihari N, Parmar MK (2012) Celecoxib plus hormone therapy versus hormone therapy alone for hormone-sensitive prostate cancer: first results from the STAMPEDE multiarm, multistage, randomised controlled trial. Lancet Oncol 13:549–558

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jamieson NB, Carter CR, McKay CJ, Oien KA (2011) Tissue biomarkers for prognosis in pancreatic ductal adenocarcinoma: a systematic review and meta-analysis. Clin Cancer Res 17:3316–3331

    CAS  PubMed  Google Scholar 

  • Jendrossek (2013) Targeting apoptosis pathways by Celecoxib in cancer. Cancer Lett 332(2):313–324

    CAS  PubMed  Google Scholar 

  • Jendrossek V, Handrick R, Belka C (2003) Celecoxib activates a novel mitochondrial apoptosis signaling pathway. FASEB J 17:1547–1549

    CAS  PubMed  Google Scholar 

  • Johnsen JI, Lindskog M, Ponthan F, Pettersen I, Elfman L, Orrego A, Sveinbjornsson B, Kogner P (2004) Cyclooxygenase-2 is expressed in neuroblastoma, and nonsteroidal anti-inflammatory drugs induce apoptosis and inhibit tumor growth in vivo. Cancer Res 64:7210–7215

    CAS  PubMed  Google Scholar 

  • Johnson AJ, Hsu AL, Lin HP, Song X, Chen CS (2002) The cyclo-oxygenase-2 inhibitor celecoxib perturbs intracellular calcium by inhibiting endoplasmic reticulum Ca2+-ATPases: a plausible link with its anti-tumour effect and cardiovascular risks. Biochem J 366:831–837

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson AJ, Smith LL, Zhu J, Heerema NA, Jefferson S, Mone A, Grever M, Chen CS, Byrd JC (2005) A novel celecoxib derivative, OSU03012, induces cytotoxicity in primary CLL cells and transformed B-cell lymphoma cell line via a caspase- and Bcl-2-independent mechanism. Blood 105:2504–2509

    CAS  PubMed  Google Scholar 

  • Kaneko et al (2013) Enhanced antitumor effect of lower-dose and longer-term CPT-11 treatment in combination with low-dose celecoxib against neuroblastoma xenografts. Int J Clin Oncol 8(1):116–125

    Google Scholar 

  • Kardosh A, Soriano N, Liu YT, Uddin J, Petasis NA, Hofman FM, Chen TC, Schonthal AH (2005) Multitarget inhibition of drug-resistant multiple myeloma cell lines by dimethyl-celecoxib (DMC), a non-COX-2 inhibitory analog of celecoxib. Blood 106:4330–4338

    CAS  PubMed  Google Scholar 

  • Kardosh A, Soriano N, Pyrko P, Liu YT, Jabbour M, Hofman FM, Schonthal AH (2007) Reduced survivin expression and tumor cell survival during chronic hypoxia and further cytotoxic enhancement by the cyclooxygenase-2 inhibitor celecoxib. J Biomed Sci 14:647–662

    CAS  PubMed  Google Scholar 

  • Kardosh A, Golden EB, Pyrko P, Uddin J, Hofman FM, Chen TC, Louie SG, Petasis NA, Schonthal AH (2008) Aggravated endoplasmic reticulum stress as a basis for enhanced glioblastoma cell killing by bortezomib in combination with celecoxib or its non-coxib analogue, 2,5-dimethyl-celecoxib. Cancer Res 68:843–851

    CAS  PubMed  Google Scholar 

  • Kelly RJ, Lopez-Chavez A, Citrin D, Janik JE, Morris JC (2011) Impacting tumor cell-fate by targeting the inhibitor of apoptosis protein survivin. Mol Cancer 10:35

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kern MA, Haugg AM, Koch AF, Schilling T, Breuhahn K, Walczak H, Fleischer B, Trautwein C, Michalski C, Schulze-Bergkamen H, Friess H, Stremmel W, Krammer PH, Schirmacher P, Muller M (2006) Cyclooxygenase-2 inhibition induces apoptosis signaling via death receptors and mitochondria in hepatocellular carcinoma. Cancer Res 66:7059–7066

    CAS  PubMed  Google Scholar 

  • Kim YB, Kim GE, Cho NH, Pyo HR, Shim SJ, Chang SK, Park HC, Suh CO, Park TK, Kim BS (2002) Overexpression of cyclooxygenase-2 is associated with a poor prognosis in patients with squamous cell carcinoma of the uterine cervix treated with radiation and concurrent chemotherapy. Cancer 95:531–539

    CAS  PubMed  Google Scholar 

  • Kim SH, Hwang CI, Juhnn YS, Lee JH, Park WY, Song YS (2007) GADD153 mediates celecoxib-induced apoptosis in cervical cancer cells. Carcinogenesis 28:223–231

    CAS  PubMed  Google Scholar 

  • Kim YY, Lee EJ, Kim YK, Kim SM, Park JY, Myoung H, Kim MJ (2010) Anti-cancer effects of celecoxib in head and neck carcinoma. Mol Cells 29:185–194

    CAS  PubMed  Google Scholar 

  • Klenke FM, Abdollahi A, Bischof M, Gebhard MM, Ewerbeck V, Huber PE, Sckell A (2011) Celecoxib enhances radiation response of secondary bone tumors of a human non-small cell lung cancer via antiangiogenesis in vivo. Strahlenther Onkol 187:45–51

    PubMed  Google Scholar 

  • Ko SC, Chapple KS, Hawcroft G, Coletta PL, Markham AF, Hull MA (2002) Paracrine cyclooxygenase-2-mediated signalling by macrophages promotes tumorigenic progression of intestinal epithelial cells. Oncogene 21:7175–7186

    CAS  PubMed  Google Scholar 

  • Koch A, Bergman B, Holmberg E, Sederholm C, Ek L, Kosieradzki J, Lamberg K, Thaning L, Ydreborg SO, Sorenson S (2011) Effect of celecoxib on survival in patients with advanced non-small cell lung cancer: a double blind randomised clinical phase III trial (CYCLUS study) by the Swedish Lung Cancer Study Group. Eur J Cancer 47:1546–1555

    CAS  PubMed  Google Scholar 

  • Komatsu K, Buchanan FG, Katkuri S, Morrow JD, Inoue H, Otaka M, Watanabe S, DuBois RN (2005) Oncogenic potential of MEK1 in rat intestinal epithelial cells is mediated via cyclooxygenase-2. Gastroenterology 129:577–590

    CAS  PubMed  Google Scholar 

  • Kucab JE, Lee C, Chen CS, Zhu J, Gilks CB, Cheang M, Huntsman D, Yorida E, Emerman J, Pollak M, Dunn SE (2005) Celecoxib analogues disrupt Akt signaling, which is commonly activated in primary breast tumours. Breast Cancer Res 7:R796–R807

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kulp SK, Yang YT, Hung CC, Chen KF, Lai JP, Tseng PH, Fowble JW, Ward PJ, Chen CS (2004) 3-phosphoinositide-dependent protein kinase-1/Akt signaling represents a major cyclooxygenase-2-independent target for celecoxib in prostate cancer cells. Cancer Res 64:1444–1451

    CAS  PubMed  Google Scholar 

  • Kuo ML, Chuang SE, Lin MT, Yang SY (2001) The involvement of PI 3-K/Akt-dependent up-regulation of Mcl-1 in the prevention of apoptosis of Hep3B cells by interleukin-6. Oncogene 20:677–685

    CAS  PubMed  Google Scholar 

  • Kuwana T, Bouchier-Hayes L, Chipuk JE, Bonzon C, Sullivan BA, Green DR, Newmeyer DD (2005) BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell 17:525–535

    CAS  PubMed  Google Scholar 

  • Ladetto M, Vallet S, Trojan A, Dell’Aquila M, Monitillo L, Rosato R, Santo L, Drandi D, Bertola A, Falco P, Cavallo F, Ricca I, De Marco F, Mantoan B, Bode-Lesniewska B, Pagliano G, Francese R, Rocci A, Astolfi M, Compagno M, Mariani S, Godio L, Marino L, Ruggeri M, Omede P, Palumbo A, Boccadoro M (2005) Cyclooxygenase-2 (COX-2) is frequently expressed in multiple myeloma and is an independent predictor of poor outcome. Blood 105:4784–4791

    CAS  PubMed  Google Scholar 

  • Leahy KM, Ornberg RL, Wang Y, Zweifel BS, Koki AT, Masferrer JL (2002) Cyclooxygenase-2 inhibition by celecoxib reduces proliferation and induces apoptosis in angiogenic endothelial cells in vivo. Cancer Res 62:625–631

    CAS  PubMed  Google Scholar 

  • Liao Z, Komaki R, Milas L, Yuan C, Kies M, Chang JY, Jeter M, Guerrero T, Blumenschien G, Smith CM, Fossella F, Brown B, Cox JD (2005) A phase I clinical trial of thoracic radiotherapy and concurrent celecoxib for patients with unfavorable performance status inoperable/unresectable non-small cell lung cancer. Clin Cancer Res 11:3342–3348

    CAS  PubMed  Google Scholar 

  • Lin MT, Lee RC, Yang PC, Ho FM, Kuo ML (2001) Cyclooxygenase-2 inducing Mcl-1-dependent survival mechanism in human lung adenocarcinoma CL1.0 cells. Involvement of phosphatidylinositol 3-kinase/Akt pathway. J Biol Chem 276:48997–49002

    CAS  PubMed  Google Scholar 

  • Lin B, Kolluri SK, Lin F, Liu W, Han YH, Cao X, Dawson MI, Reed JC, Zhang XK (2004a) Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3. Cell 116:527–540

    CAS  PubMed  Google Scholar 

  • Lin HP, Kulp SK, Tseng PH, Yang YT, Yang CC, Chen CS (2004b) Growth inhibitory effects of celecoxib in human umbilical vein endothelial cells are mediated through G1 arrest via multiple signaling mechanisms. Mol Cancer Ther 3:1671–1680

    CAS  PubMed  Google Scholar 

  • Liu X, Yue P, Zhou Z, Khuri FR, Sun SY (2004) Death receptor regulation and celecoxib-induced apoptosis in human lung cancer cells. J Natl Cancer Inst 96:1769–1780

    CAS  PubMed  Google Scholar 

  • Liu X, Yue P, Schonthal AH, Khuri FR, Sun SY (2006) Cellular FLICE-inhibitory protein down-regulation contributes to celecoxib-induced apoptosis in human lung cancer cells. Cancer Res 66:11115–11119

    CAS  PubMed  Google Scholar 

  • Liu B, Shi ZL, Feng J, Tao HM (2008) Celecoxib, a cyclooxygenase-2 inhibitor, induces apoptosis in human osteosarcoma cell line MG-63 via down-regulation of PI3K/Akt. Cell Biol Int 32:494–501

    CAS  PubMed  Google Scholar 

  • Liu H, Yang Y, Xiao J, Lv Y, Liu Y, Yang H, Zhao L (2009) Inhibition of cyclooxygenase-2 suppresses lymph node metastasis via VEGF-C. Anat Rec (Hoboken) 292:1577–1583

    CAS  Google Scholar 

  • Liu B, Wen JK, Li BH, Fang XM, Wang JJ, Zhang YP, Shi CJ, Zhang DQ, Han M (2011) Celecoxib and acetylbritannilactone interact synergistically to suppress breast cancer cell growth via COX-2-dependent and -independent mechanisms. Cell Death Dis 2:e185

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lynch PM, Ayers GD, Hawk E, Richmond E, Eagle C, Woloj M, Church J, Hasson H, Patterson S, Half E, Burke CA (2010) The safety and efficacy of celecoxib in children with familial adenomatous polyposis. Am J Gastroenterol 105:1437–1443

    CAS  PubMed  Google Scholar 

  • Maier TJ, Janssen A, Schmidt R, Geisslinger G, Grosch S (2005) Targeting the beta-catenin/APC pathway: a novel mechanism to explain the cyclooxygenase-2-independent anticarcinogenic effects of celecoxib in human colon carcinoma cells. Faseb J 19:1353–1355

    CAS  PubMed  Google Scholar 

  • Maurer U, Charvet C, Wagman AS, Dejardin E, Green DR (2006) Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1. Mol Cell 21:749–760

    CAS  PubMed  Google Scholar 

  • Mehar A, Macanas-Pirard P, Mizokami A, Takahashi Y, Kass GE, Coley HM (2008) The effects of cyclooxygenase-2 expression in prostate cancer cells: modulation of response to cytotoxic agents. J Pharmacol Exp Ther 324:1181–1187

    CAS  PubMed  Google Scholar 

  • Milas L, Kishi K, Hunter N, Mason K, Masferrer JL, Tofilon PJ (1999) Enhancement of tumor response to gamma-radiation by an inhibitor of cyclooxygenase-2 enzyme. J Natl Cancer Inst 91:1501–1504

    CAS  PubMed  Google Scholar 

  • Mohammad MA, Zeeneldin AA, Abd Elmageed ZY, Khalil EH, Mahdy SM, Sharada HM, Sharawy SK, Abdel-Wahab AH (2012) Clinical relevance of cyclooxygenase-2 and matrix metalloproteinases (MMP-2 and MT1-MMP) in human breast cancer tissue. Mol Cell Biochem 366:269–275

    CAS  PubMed  Google Scholar 

  • Muller AC, Handrick R, Elsaesser SJ, Rudner J, Henke G, Ganswindt U, Belka C, Jendrossek V (2008) Importance of Bak for celecoxib-induced apoptosis. Biochem Pharmacol 76:1082–1096

    PubMed  Google Scholar 

  • Ninomiya I, Nagai N, Oyama K, Hayashi H, Tajima H, Kitagawa H, Fushida S, Fujimura T, Ohta T (2012) Antitumor and anti-metastatic effects of cyclooxygenase-2 inhibition by celecoxib on human colorectal carcinoma xenografts in nude mouse rectum. Oncol Rep 28:777–784

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, Joseph MK, Kitada S, Korsmeyer SJ, Kunzer AR, Letai A, Li C, Mitten MJ, Nettesheim DG, Ng S, Nimmer PM, O’Connor JM, Oleksijew A, Petros AM, Reed JC, Shen W, Tahir SK, Thompson CB, Tomaselli KJ, Wang B, Wendt MD, Zhang H, Fesik SW, Rosenberg SH (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435:677–681

    CAS  PubMed  Google Scholar 

  • Opferman JT (2006) Unraveling MCL-1 degradation. Cell Death Differ 13:1260–1262

    CAS  PubMed  Google Scholar 

  • Oyama K, Fujimura T, Ninomiya I, Miyashita T, Kinami S, Fushida S, Ohta T, Koichi M (2005) A COX-2 inhibitor prevents the esophageal inflammation-metaplasia-adenocarcinoma sequence in rats. Carcinogenesis 26:565–570

    CAS  PubMed  Google Scholar 

  • Pattingre S, Bauvy C, Carpentier S, Levade T, Levine B, Codogno P (2009) Role of JNK1-dependent Bcl-2 phosphorylation in ceramide-induced macroautophagy. J Biol Chem 284:2719–2728

    CAS  PubMed Central  PubMed  Google Scholar 

  • Phillips RK, Wallace MH, Lynch PM, Hawk E, Gordon GB, Saunders BP, Wakabayashi N, Shen Y, Zimmerman S, Godio L, Rodrigues-Bigas M, Su LK, Sherman J, Kelloff G, Levin B, Steinbach G (2002) A randomised, double blind, placebo controlled study of celecoxib, a selective cyclooxygenase 2 inhibitor, on duodenal polyposis in familial adenomatous polyposis. Gut 50:857–860

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pruthi RS, Derksen JE, Moore D, Carson CC, Grigson G, Watkins C, Wallen E (2006) Phase II trial of celecoxib in prostate-specific antigen recurrent prostate cancer after definitive radiation therapy or radical prostatectomy. Clin Cancer Res 12:2172–2177

    CAS  PubMed  Google Scholar 

  • Pyrko P, Soriano N, Kardosh A, Liu YT, Uddin J, Petasis NA, Hofman FM, Chen CS, Chen TC, Schonthal AH (2006) Downregulation of survivin expression and concomitant induction of apoptosis by celecoxib and its non-cyclooxygenase-2-inhibitory analog, dimethyl-celecoxib (DMC), in tumor cells in vitro and in vivo. Mol Cancer 5:19

    PubMed Central  PubMed  Google Scholar 

  • Pyrko P, Kardosh A, Liu YT, Soriano N, Xiong W, Chow RH, Uddin J, Petasis NA, Mircheff AK, Farley RA, Louie SG, Chen TC, Schonthal AH (2007) Calcium-activated endoplasmic reticulum stress as a major component of tumor cell death induced by 2,5-dimethyl-celecoxib, a non-coxib analogue of celecoxib. Mol Cancer Ther 6:1262–1275

    CAS  PubMed  Google Scholar 

  • Rasheva VI, Domingos PM (2009) Cellular responses to endoplasmic reticulum stress and apoptosis. Apoptosis 14:996–1007

    PubMed  Google Scholar 

  • Reed JC (2006) Proapoptotic multidomain Bcl-2/Bax-family proteins: mechanisms, physiological roles, and therapeutic opportunities. Cell Death Differ 13:1378–1386

    CAS  PubMed  Google Scholar 

  • Reed S, Li H, Li C, Lin J (2011) Celecoxib inhibits STAT3 phosphorylation and suppresses cell migration and colony forming ability in rhabdomyosarcoma cells. Biochem Biophys Res Commun 407:450–455

    CAS  PubMed  Google Scholar 

  • Rudner J, Elsaesser SJ, Muller AC, Belka C, Jendrossek V (2010) Differential effects of anti-apoptotic Bcl-2 family members Mcl-1, Bcl-2, and Bcl-xL on celecoxib-induced apoptosis. Biochem Pharmacol 79:10–20

    CAS  PubMed  Google Scholar 

  • Rudner J, Elsaesser SJ, Jendrossek V, Huber SM (2011) Anti-apoptotic Bcl-2 fails to form efficient complexes with pro-apoptotic Bak to protect from Celecoxib-induced apoptosis. Biochem Pharmacol 81:32–42

    CAS  PubMed  Google Scholar 

  • Sakoguchi-Okada N, Takahashi-Yanaga F, Fukada K, Shiraishi F, Taba Y, Miwa Y, Morimoto S, Iida M, Sasaguri T (2007) Celecoxib inhibits the expression of survivin via the suppression of promoter activity in human colon cancer cells. Biochem Pharmacol 73:1318–1329

    CAS  PubMed  Google Scholar 

  • Schiffmann S, Maier TJ, Wobst I, Janssen A, Corban-Wilhelm H, Angioni C, Geisslinger G, Grosch S (2008) The anti-proliferative potency of celecoxib is not a class effect of coxibs. Biochem Pharmacol 76:179–187

    CAS  PubMed  Google Scholar 

  • Schonthal AH (2006) Antitumor properties of dimethyl-celecoxib, a derivative of celecoxib that does not inhibit cyclooxygenase-2: implications for glioma therapy. Neurosurg Focus 20:E21

    PubMed  Google Scholar 

  • Schonthal AH (2007) Direct non-cyclooxygenase-2 targets of celecoxib and their potential relevance for cancer therapy. Br J Cancer 97:1465–1468

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schonthal AH (2010) Exploiting cyclooxygenase-(in)dependent properties of COX-2 inhibitors for malignant glioma therapy. Anticancer Agents Med Chem 10:450–461

    CAS  PubMed  Google Scholar 

  • Schonthal AH, Chen TC, Hofman FM, Louie SG, Petasis NA (2008) Celecoxib analogs that lack COX-2 inhibitory function: preclinical development of novel anticancer drugs. Expert Opin Investig Drugs 17:197–208

    PubMed  Google Scholar 

  • Seno H, Oshima M, Ishikawa TO, Oshima H, Takaku K, Chiba T, Narumiya S, Taketo MM (2002) Cyclooxygenase 2- and prostaglandin E(2) receptor EP(2)-dependent angiogenesis in Apc(Delta716) mouse intestinal polyps. Cancer Res 62:506–511

    CAS  PubMed  Google Scholar 

  • Setia S, Sanyal SN (2012) Downregulation of NF-kappaB and PCNA in the regulatory pathways of apoptosis by cyclooxygenase-2 inhibitors in experimental lung cancer. Mol Cell Biochem 369:75–86

    CAS  PubMed  Google Scholar 

  • Sinha-Datta U, Taylor JM, Brown M, Nicot C (2008) Celecoxib disrupts the canonical apoptotic network in HTLV-I cells through activation of Bax and inhibition of PKB/Akt. Apoptosis 13:33–40

    CAS  PubMed  Google Scholar 

  • Sobolewski C, Cerella C, Dicato M, Diederich M (2011) Cox-2 inhibitors induce early c-Myc downregulation and lead to expression of differentiation markers in leukemia cells. Cell Cycle 10:2978–2993

    CAS  PubMed  Google Scholar 

  • Solomon SD, McMurray JJ, Pfeffer MA, Wittes J, Fowler R, Finn P, Anderson WF, Zauber A, Hawk E, Bertagnolli M (2005) Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N Engl J Med 352:1071–1080

    CAS  PubMed  Google Scholar 

  • Song X, Lin HP, Johnson AJ, Tseng PH, Yang YT, Kulp SK, Chen CS (2002) Cyclooxygenase-2, player or spectator in cyclooxygenase-2 inhibitor-induced apoptosis in prostate cancer cells. J Natl Cancer Inst 94:585–591

    CAS  PubMed  Google Scholar 

  • Sooriakumaran P, Macanas-Pirard P, Bucca G, Henderson A, Langley SE, Laing RW, Smith CP, Laing EE, Coley HM (2009) A gene expression profiling approach assessing celecoxib in a randomized controlled trial in prostate cancer. Cancer Genomics Proteomics 6:93–99

    CAS  PubMed  Google Scholar 

  • Soslow RA, Dannenberg AJ, Rush D, Woerner BM, Khan KN, Masferrer J, Koki AT (2000) COX-2 is expressed in human pulmonary, colonic, and mammary tumors. Cancer 89:2637–2645

    CAS  PubMed  Google Scholar 

  • Steinbach G, Lynch PM, Phillips RK, Wallace MH, Hawk E, Gordon GB, Wakabayashi N, Saunders B, Shen Y, Fujimura T, Su LK, Levin B (2000) The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med 342:1946–1952

    CAS  PubMed  Google Scholar 

  • Subhashini J, Mahipal SV, Reddanna P (2005) Anti-proliferative and apoptotic effects of celecoxib on human chronic myeloid leukemia in vitro. Cancer Lett 224:31–43

    CAS  PubMed  Google Scholar 

  • Tanaka K, Tomisato W, Hoshino T, Ishihara T, Namba T, Aburaya M, Katsu T, Suzuki K, Tsutsumi S, Mizushima T (2005) Involvement of intracellular Ca2+ levels in nonsteroidal anti-inflammatory drug-induced apoptosis. J Biol Chem 280:31059–31067

    CAS  PubMed  Google Scholar 

  • Thiel A, Mrena J, Ristimaki A (2011) Cyclooxygenase-2 and gastric cancer. Cancer Metastasis Rev 30:387–395

    CAS  PubMed  Google Scholar 

  • Thompson J, Winoto A (2008) During negative selection, Nur77 family proteins translocate to mitochondria where they associate with Bcl-2 and expose its proapoptotic BH3 domain. J Exp Med 205:1029–1036

    CAS  PubMed Central  PubMed  Google Scholar 

  • Timmer JC, Salvesen GS (2007) Caspase substrates. Cell Death Differ 14:66–72

    CAS  PubMed  Google Scholar 

  • Tong Z, Wu X, Chen CS, Kehrer JP (2006) Cytotoxicity of a non-cyclooxygenase-2 inhibitory derivative of celecoxib in non-small-cell lung cancer A549 cells. Lung Cancer 52:117–124

    PubMed  Google Scholar 

  • Trifan OC, Durham WF, Salazar VS, Horton J, Levine BD, Zweifel BS, Davis TW, Masferrer JL (2002) Cyclooxygenase-2 inhibition with celecoxib enhances antitumor efficacy and reduces diarrhea side effect of CPT-11. Cancer Res 62:5778–5784

    CAS  PubMed  Google Scholar 

  • Tsutsumi S, Gotoh T, Tomisato W, Mima S, Hoshino T, Hwang HJ, Takenaka H, Tsuchiya T, Mori M, Mizushima T (2004) Endoplasmic reticulum stress response is involved in nonsteroidal anti-inflammatory drug-induced apoptosis. Cell Death Differ 11:1009–1016

    CAS  PubMed  Google Scholar 

  • Tuynman JB, Vermeulen L, Boon EM, Kemper K, Zwinderman AH, Peppelenbosch MP, Richel DJ (2008) Cyclooxygenase-2 inhibition inhibits c-Met kinase activity and Wnt activity in colon cancer. Cancer Res 68:1213–1220

    CAS  PubMed  Google Scholar 

  • Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081–1086

    CAS  PubMed  Google Scholar 

  • Wang GQ, Gastman BR, Wieckowski E, Goldstein LA, Gambotto A, Kim TH, Fang B, Rabinovitz A, Yin XM, Rabinowich H (2001) A role for mitochondrial Bak in apoptotic response to anticancer drugs. J Biol Chem 276:34307–34317

    CAS  PubMed  Google Scholar 

  • Wang L, Chen W, Xie X, He Y, Bai X (2008) Celecoxib inhibits tumor growth and angiogenesis in an orthotopic implantation tumor model of human colon cancer. Exp Oncol 30:42–51

    PubMed  Google Scholar 

  • Waskewich C, Blumenthal RD, Li H, Stein R, Goldenberg DM, Burton J (2002) Celecoxib exhibits the greatest potency amongst cyclooxygenase (COX) inhibitors for growth inhibition of COX-2-negative hematopoietic and epithelial cell lines. Cancer Res 62:2029–2033

    CAS  PubMed  Google Scholar 

  • Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB, Korsmeyer SJ (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292:727–730

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wei Y, Pattingre S, Sinha S, Bassik M, Levine B (2008) JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 30:678–688

    CAS  PubMed Central  PubMed  Google Scholar 

  • Williams CS, Mann M, DuBois RN (1999) The role of cyclooxygenases in inflammation, cancer, and development. Oncogene 18:7908–7916

    CAS  PubMed  Google Scholar 

  • Williams CS, Watson AJ, Sheng H, Helou R, Shao J, DuBois RN (2000) Celecoxib prevents tumor growth in vivo without toxicity to normal gut: lack of correlation between in vitro and in vivo models. Cancer Res 60:6045–6051

    CAS  PubMed  Google Scholar 

  • Willis SN, Adams JM (2005) Life in the balance: how BH3-only proteins induce apoptosis. Curr Opin Cell Biol 17:617–625

    CAS  PubMed Central  PubMed  Google Scholar 

  • Willis SN, Chen L, Dewson G, Wei A, Naik E, Fletcher JI, Adams JM, Huang DC (2005) Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev 19:1294–1305

    CAS  PubMed Central  PubMed  Google Scholar 

  • Willis SN, Fletcher JI, Kaufmann T, van Delft MF, Chen L, Czabotar PE, Ierino H, Lee EF, Fairlie WD, Bouillet P, Strasser A, Kluck RM, Adams JM, Huang DC (2007) Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science 315:856–859

    CAS  PubMed  Google Scholar 

  • Winfield LL, Payton-Stewart F (2012) Celecoxib and Bcl-2: emerging possibilities for anticancer drug design. Future Med Chem 4:361–383

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wobst I, Schiffmann S, Birod K, Maier TJ, Schmidt R, Angioni C, Geisslinger G, Grosch S (2008) Dimethylcelecoxib inhibits prostaglandin E2 production. Biochem Pharmacol 76:62–69

    CAS  PubMed  Google Scholar 

  • Wu T, Leng J, Han C, Demetris AJ (2004) The cyclooxygenase-2 inhibitor celecoxib blocks phosphorylation of Akt and induces apoptosis in human cholangiocarcinoma cells. Mol Cancer Ther 3:299–307

    CAS  PubMed  Google Scholar 

  • Xia JJ, Pei LB, Zhuang JP, Ji Y, Xu GP, Zhang ZP, Li N, Yan JL (2010) Celecoxib inhibits beta-catenin-dependent survival of the human osteosarcoma MG-63 cell line. J Int Med Res 38:1294–1304

    CAS  PubMed  Google Scholar 

  • Xin X, Majumder M, Girish GV, Mohindra V, Maruyama T, Lala PK (2012) Targeting COX-2 and EP4 to control tumor growth, angiogenesis, lymphangiogenesis and metastasis to the lungs and lymph nodes in a breast cancer model. Lab Invest 92:1115–1128

    CAS  PubMed  Google Scholar 

  • Xue WP, Bai SM, Luo M, Bi ZF, Liu YM, Wu SK (2011) Phase I clinical trial of nasopharyngeal radiotherapy and concurrent celecoxib for patients with locoregionally advanced nasopharyngeal carcinoma. Oral Oncol 47:753–757

    PubMed  Google Scholar 

  • Yacoub A, Park MA, Hanna D, Hong Y, Mitchell C, Pandya AP, Harada H, Powis G, Chen CS, Koumenis C, Grant S, Dent P (2006) OSU-03012 promotes caspase-independent but PERK-, cathepsin B-, BID-, and AIF-dependent killing of transformed cells. Mol Pharmacol 70:589–603

    CAS  PubMed  Google Scholar 

  • Yamamoto K, Ichijo H, Korsmeyer SJ (1999) BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M. Mol Cell Biol 19:8469–8478

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamamoto H, Ngan CY, Monden M (2008) Cancer cells survive with survivin. Cancer Sci 99:1709–1714

    CAS  PubMed  Google Scholar 

  • Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59

    CAS  PubMed  Google Scholar 

  • Zhai D, Jin C, Huang Z, Satterthwait AC, Reed JC (2008) Differential regulation of Bax and Bak by anti-apoptotic Bcl-2 family proteins Bcl-B and Mcl-1. J Biol Chem 283:9580–9586

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang S, Suvannasankha A, Crean CD, White VL, Johnson A, Chen CS, Farag SS (2007a) OSU-03012, a novel celecoxib derivative, is cytotoxic to myeloma cells and acts through multiple mechanisms. Clin Cancer Res 13:4750–4758

    CAS  PubMed  Google Scholar 

  • Zhang Y, Tao J, Huang H, Ding G, Cheng Y, Sun W (2007b) Effects of celecoxib on voltage-gated calcium channel currents in rat pheochromocytoma (PC12) cells. Pharmacol Res 56:267–274

    CAS  PubMed  Google Scholar 

  • Zhao S, Cai J, Bian H, Gui L, Zhao F (2009) Synergistic inhibition effect of tumor growth by using celecoxib in combination with oxaliplatin. Cancer Invest 27:636–640

    CAS  PubMed  Google Scholar 

  • Zhong Q, Gao W, Du F, Wang X (2005) Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell 121:1085–1095

    CAS  PubMed  Google Scholar 

  • Zhou P, Qian L, Bieszczad CK, Noelle R, Binder M, Levy NB, Craig RW (1998) Mcl-1 in transgenic mice promotes survival in a spectrum of hematopoietic cell types and immortalization in the myeloid lineage. Blood 92:3226–3239

    CAS  PubMed  Google Scholar 

  • Zhu J, Song X, Lin HP, Young DC, Yan S, Marquez VE, Chen CS (2002) Using cyclooxygenase-2 inhibitors as molecular platforms to develop a new class of apoptosis-inducing agents. J Natl Cancer Inst 94:1745–1757

    CAS  PubMed  Google Scholar 

  • Zhu J, Huang JW, Tseng PH, Yang YT, Fowble J, Shiau CW, Shaw YJ, Kulp SK, Chen CS (2004) From the cyclooxygenase-2 inhibitor celecoxib to a novel class of 3-phosphoinositide-dependent protein kinase-1 inhibitors. Cancer Res 64:4309–4318

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work in the author’s laboratory was supported by grants from the German Research Foundation (DFG; GRK1739), the Wilhelm-Sander-Stiftung 2005.143.1, and the Deutsche Krebshilfe/Mildred-Scheel-Stiftung (107388).

Conflict of interest: Pharmacia/Pfizer kindly provided Celecoxib for the studies performed by the author’s laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verena Jendrossek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jendrossek, V. (2014). Exploiting Celecoxib in Cancer Therapy. In: Neuzil, J., Pervaiz, S., Fulda, S. (eds) Mitochondria: The Anti- cancer Target for the Third Millennium. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8984-4_5

Download citation

Publish with us

Policies and ethics