Skip to main content

Part of the book series: International Cryogenics Monograph Series ((ICMS))

Abstract

The methods to measure the thermal conductivity at low temperature are described: the steady-state techniques, (Sect. 2.2); the 3ω technique (Sect. 2.3); and the thermal diffusivity measurement (Sect. 2.4). Each of these techniques has its own advantages as well as its inherent limitations, with some techniques more appropriate to specific sample geometry, such as the 3ω technique for thin films which is discussed in detail in Sect. 2.4.2. The radial flux method is reported in Sect. 2.2.4, the laser flash diffusivity method in Sect. 2.4.1 and the “pulsed power or Maldonado technique” in Sect. 2.3.2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ventura, G., Risegari, L.: The art of cryogenics: low-temperature experimental techniques. Elsevier, Amsterdam (2007)

    Google Scholar 

  2. Woodcraft, A.L.: Predicting the thermal conductivity of aluminium alloys in the cryogenic to room temperature range. Cryogenics 45(6), 421–431 (2005)

    Article  ADS  Google Scholar 

  3. Woodcraft, A.L.: Recommended values for the thermal conductivity of aluminium of different purities in the cryogenic to room temperature range, and a comparison with copper. Cryogenics 45(9), 626–636 (2005)

    Article  ADS  Google Scholar 

  4. Slack, G.A.: The thermal conductivity of nonmetallic crystals. Solid State Phys. 34, 1–71 (1979)

    Google Scholar 

  5. Tye, R.P.: Thermal Conductivity, vol. 1. Academic Press, London (1969)

    Google Scholar 

  6. Johnson, V.A., Marton, L.L., Lark-Horovitz, K.: Methods of Experimental Physics. Springer, New York (1976)

    Google Scholar 

  7. Berman, R. (ed.): Thermal Conduction in Solids. Oxford University Press, Oxford (1976)

    Google Scholar 

  8. Pobell, F.: Matter and Methods at Low Temperatures. Springer, New York (2007)

    Google Scholar 

  9. Wikus, P., Hertel, S.A., Leman, S.W., McCarthy, K.A., Ojeda, S.M., Figueroa-Feliciano, E.: The electrical resistance and thermal conductivity of Ti 15 V–3Cr–3Sn–3Al at cryogenic temperatures. Cryogenics 51(1), 41–44 (2011)

    Article  ADS  Google Scholar 

  10. Risegari, L., Barucci, M., Olivieri, E., Pasca, E., Ventura, G.: Measurement of the thermal conductivity of copper samples between 30 and 150 mK. Cryogenics 44(12), 875–878 (2004)

    Article  ADS  Google Scholar 

  11. Buck, W.: Thermal properties. In: Czichos, H., Saito, T., Smith, L. (eds.) Springer Handbook of Materials Measurement Methods, pp. 399–429. Springer, Berlin (2006)

    Google Scholar 

  12. Slack, G.A., Glassbrenner, C.: Thermal conductivity of germanium from 3 K to 1020 K. Phys. Rev. 120(3), 782 (1960)

    Article  ADS  Google Scholar 

  13. Corbino, O.: Thermal oscillations in lamps of thin fibers with alternating current flowing through them and the resulting effect on the rectifier as a result of the presence of even-numbered harmonics. Physikalische Zeitschrift 11, 413–417 (1910)

    MATH  Google Scholar 

  14. Corbino, O.: Periodic resistance changes of fine metal threads which are brought together by alternating streams as well as deduction of their thermo characteristics at high temperatures. Phys. Z. 12, 292–295 (1911)

    Google Scholar 

  15. Rosenthal, L.A.: Thermal response of bridgewires used in electroexplosive devices. Rev. Sci. Instrum. 32(9), 1033–1036 (1961)

    Article  ADS  Google Scholar 

  16. Holland, L.R.: Physical properties of titanium. III. The specific heat. J. Appl. Phys. 34(8), 2350–2357 (1963)

    Article  ADS  Google Scholar 

  17. Birge, N.O., Dixon, P.K., Menon, N.: Specific heat spectroscopy: origins, status and applications of the 3ω method. Thermochim. Acta 304, 51–66 (1997)

    Article  Google Scholar 

  18. Birge, N.O., Nagel, S.R.: Specific-heat spectroscopy of the glass transition. Phys. Rev. Lett. 54(25), 2674 (1985)

    Article  ADS  Google Scholar 

  19. Birge, N.O., Nagel, S.R.: Wide-frequency specific heat spectrometer. Rev. Sci. Instrum. 58(8), 1464–1470 (1987)

    Article  ADS  Google Scholar 

  20. Frank, R., Drach, V., Fricke, J.: Determination of thermal conductivity and specific heat by a combined 3ω/decay technique. Rev. Sci. Instrum. 64(3), 760–765 (1993)

    Article  ADS  Google Scholar 

  21. Cahill, D.G.: Thermal conductivity measurement from 30 to 750 K: the 3ω method. Rev. Sci. Instrum. 61(2), 802–808 (1990)

    Article  ADS  Google Scholar 

  22. Cahill, D.G., Pohl, R.O.: Thermal conductivity of amorphous solids above the plateau. Phys. Rev. B 35(8), 4067 (1987)

    Article  ADS  Google Scholar 

  23. Carslaw, H., Jaeger, J.: Conduction of Heat in Solids (paperback,). Clarendon Press, Oxford (1959)

    Google Scholar 

  24. Lee, S.M., Kwun, Sl: Heat capacity measurement of dielectric solids using a linear surface heater: application to ferroelectrics. Rev. Sci. Instrum. 65(4), 966–970 (1994)

    Article  ADS  Google Scholar 

  25. Moon, I.K., Jeong, Y.H., Kwun, S.I.: The 3ω technique for measuring dynamic specific heat and thermal conductivity of a liquid or solid. Rev. Sci. Instrum. 67(1), 29–35 (1996)

    Article  ADS  Google Scholar 

  26. Cahill, D.G., Fischer, H.E., Klitsner, T., Swartz, E., Pohl, R.: Thermal conductivity of thin films: measurements and understanding. J. Vac. Sci. Tech. A: Vac. Surf. Films 7(3), 1259–1266 (1989)

    Article  ADS  Google Scholar 

  27. Lee, S.-M., Cahill, D.G.: Heat transport in thin dielectric films. J. Appl. Phys. 81(6), 2590–2595 (1997)

    Article  ADS  Google Scholar 

  28. Kim, J.H., Feldman, A., Novotny, D.: Application of the three omega thermal conductivity measurement method to a film on a substrate of finite thickness. J. Appl. Phys. 86(7), 3959–3963 (1999)

    Article  ADS  Google Scholar 

  29. Yamane, T., Nagai, N., Katayama, S.-I., Todoki, M.: Measurement of thermal conductivity of silicon dioxide thin films using a 3ω method. J. Appl. Phys. 91(12), 9772–9776 (2002)

    Article  ADS  Google Scholar 

  30. Raudzis, C., Schatz, F., Wharam, D.: Extending the 3ω method for thin-film analysis to high frequencies. J. Appl. Phys. 93(10), 6050–6055 (2003)

    Article  ADS  Google Scholar 

  31. Olson, B.W., Graham, S., Chen, K.: A practical extension of the 3ω method to multilayer structures. Rev. Sci. Instrum. 76(5), 053901–053907 (2005)

    Google Scholar 

  32. Tong, T., Majumdar, A.: Reexamining the 3-omega technique for thin film thermal characterization. Rev. Sci. Instrum. 77(10), 104902–104909 (2006)

    Google Scholar 

  33. Alvarez-Quintana, J., Rodriguez-Viejo, J.: Extension of the 3ω method to measure the thermal conductivity of thin films without a reference sample. Sens. Actuators, A 142(1), 232–236 (2008)

    Article  Google Scholar 

  34. Bourgeois, O., Fournier, T., Chaussy, J.: Measurement of the thermal conductance of silicon nanowires at low temperature. J. Appl. Phys. 101(1), 016103 (2007)

    Article  ADS  Google Scholar 

  35. Lu, L., Yi, W., Zhang, D.: 3ω method for specific heat and thermal conductivity measurements. Rev. Sci. Instrum. 72(7), 2996–3003 (2001)

    Article  ADS  Google Scholar 

  36. Choi, T.Y., Poulikakos, D., Tharian, J., Sennhauser, U.: Measurement of thermal conductivity of individual multiwalled carbon nanotubes by the 3-ω method. Appl. Phys. Lett. 87(1), 013103-013108 (2005)

    Google Scholar 

  37. Hu, X.J., Padilla, A.A., Xu, J., Fisher, T.S., Goodson, K.E.: 3-omega measurements of vertically oriented carbon nanotubes on silicon. J. Heat. Trans. T. ASME 128, 1109–1113 (2006)

    Google Scholar 

  38. Hou, J., Wang, X., Vellelacheruvu, P., Guo, J., Liu, C., Cheng, H.-M.: Thermal characterization of single-wall carbon nanotube bundles using the self-heating 3ω technique. J. Appl. Phys. 100(12), 124314-124319 (2006)

    Google Scholar 

  39. Cole, K.D.: Steady-periodic Green’s functions and thermal-measurement applications in rectangular coordinates. J. Heat Trans. 128, 706–716 (2006)

    Google Scholar 

  40. Battaglia, J.-L., Wiemer, C., Fanciulli, M.: An accurate low-frequency model for the 3ω method. J. Appl. Phys. 101(10), 104510 (2007)

    Article  ADS  Google Scholar 

  41. Jonsson, U.G., Andersson, O.: Investigations of the low-and high-frequency response of-sensors used in dynamic heat capacity measurements. Meas. Sci. Technol. 9(11), 1873 (1998)

    Article  ADS  Google Scholar 

  42. Jacquot, A., Lenoir, B., Dauscher, A., Stolzer, M., Meusel, J.: Numerical simulation of the 3ω method for measuring the thermal conductivity. J. Appl. Phys. 91(7), 4733–4738 (2002)

    Article  ADS  Google Scholar 

  43. Borca-Tasciuc, T., Kumar, A., Chen, G.: Data reduction in 3ω method for thin-film thermal conductivity determination. Rev. Sci. Instrum. 72(4), 2139–2147 (2001)

    Article  ADS  Google Scholar 

  44. Bhattacharya, P., Nara, S., Vijayan, P., Tang, T., Lai, W., Phelan, P., Prasher, R., Song, D., Wang, J.: Characterization of the temperature oscillation technique to measure the thermal conductivity of fluids. Int. J. Heat Mass Transfer 49(17), 2950–2956 (2006)

    Article  Google Scholar 

  45. Wang, H., Sen, M.: Analysis of the 3-omega method for thermal conductivity measurement. Int. J. Heat Mass Transfer 52(7), 2102–2109 (2009)

    Article  MATH  Google Scholar 

  46. Wang, Z.L., Tang, D.W., Zheng, X.H.: Simultaneous determination of thermal conductivities of thin film and substrate by extending 3ω-method to wide-frequency range. Appl. Surf. Sci. 253(22), 9024–9029 (2007)

    Article  ADS  Google Scholar 

  47. Faghani, F.: Thermal Conductivity Measurement of PEDOT: PSS by 3-Omega Technique. Linköping, Sweden (2010)

    Google Scholar 

  48. De Koninck, D.: Thermal conductivity measurements using the 3-omega technique: application to power harvesting microsystems. In: Masters Abstracts International 2008

    Google Scholar 

  49. Maldonado, O.: Pulse method for simultaneous measurement of electric thermopower and heat conductivity at low temperatures. Cryogenics 32(10), 908–912 (1992)

    Article  ADS  Google Scholar 

  50. DESIGN, Q.: Sorrento Valley Rd. San Diego, CA 92121-1311 USA

    Google Scholar 

  51. Parker, W., Jenkins, R., Butler, C., Abbott, G.: Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys. 32(9), 1679–1684 (1961)

    Article  ADS  Google Scholar 

  52. Donaldson, A., Taylor, R.: Thermal diffusivity measurement by a radial heat flow method. J. Appl. Phys. 46(10), 4584–4589 (1975)

    Article  ADS  Google Scholar 

  53. Vandersande, J., Pohl, R.: Simple apparatus for the measurement of thermal diffusivity between 80–500 K using the modified Ångström method. Rev. Sci. Instrum. 51(12), 1694–1699 (1980)

    Article  ADS  Google Scholar 

  54. Gembarovič, J., Vozár, L., Majerník, V.: Using the least square method for data reduction in the flash method. Int. J. Heat Mass Transfer 33(7), 1563–1565 (1990)

    Article  Google Scholar 

  55. Hatta, I., Sasuga, Y., Kato, R., Maesono, A.: Thermal diffusivity measurement of thin films by means of an ac calorimetric method. Rev. Sci. Instrum. 56(8), 1643–1647 (1985)

    Article  ADS  Google Scholar 

  56. Pasca, E., Barucci, M., Ventura, G.: Measurement of Electron-phonon decoupling in NTD31 Germanium. In: Proceedings of the ICATPP 7th 684 (2002)

    Google Scholar 

  57. Arnaboldi, C., Avignone, F., Beeman, J., Barucci, M., Balata, M., Brofferio, C., Bucci, C., Cebrian, S., Creswick, R., Capelli, S.: Physics potential and prospects for the CUORICINO and CUORE experiments. Astropart. Phys. 20(2), 91–110 (2003)

    Article  ADS  Google Scholar 

  58. Shklovskii, B.I., Efros, A.L.: Electronic properties of doped semiconductors. vol. 1. Moscow Izdatel Nauka, Moscow (1979)

    Google Scholar 

  59. Mott, N.F., Physicist, G.B.: Conduction in Non-crystalline Materials. Clarendon Press, Oxford (1987)

    Google Scholar 

  60. Barucci, M., Beeman, J., Olivieri, E., Pasca, E., Risegari, L., Ventura, G.: Electrical characteristics of heavily doped NTD Ge at very low temperatures. Physica B 368(1), 139–142 (2005)

    Article  ADS  Google Scholar 

  61. Keesom, P., Seidel, G.: Specific heat of germanium and silicon at low temperatures. Phys. Rev. 113(1), 33 (1959)

    Article  ADS  Google Scholar 

  62. Richards, P.: Bolometers for infrared and millimeter waves. J. Appl. Phys. 76(1), 1–24 (1994)

    Article  ADS  Google Scholar 

  63. Twerenbold, D.: Cryogenic particle detectors. Rep. Prog. Phys. 59(3), 349 (1996)

    Article  ADS  Google Scholar 

  64. Wang, N., Wellstood, F.C., Sadoulet, B., Haller, E.E., Beeman, J.: Electrical and thermal properties of neutron-transmutation-doped Ge at 20 mK. Phys. Rev. B 41(6), 3761–3768 (1990)

    Article  ADS  Google Scholar 

  65. Wang, N., Beeman, J., Cleland, A., Cummings, A., Haller, E., Lange, A., Ross, R., Sadoulet, B., Steiner, H., Shutt, T.: Particle detection with semiconductor thermistors at low temperatures. Nucl. Sci. IEEE Trans. 36(1), 852–856 (1989)

    Article  ADS  Google Scholar 

  66. Soudee, J., Broszkiewicz, D., Giraud-Héraud, Y., Pari, P., Chapellier, M.: Hot electrons effect in a# 23 NTD Ge sample. J. Low Temp. Phys. 110(5–6), 1013–1027 (1998)

    Article  ADS  Google Scholar 

  67. Ventura, G., Bianchini, G., Gottardi, E., Peroni, I., Peruzzi, A.: Thermal expansion and thermal conductivity of Torlon at low temperatures. Cryogenics 39(5), 481–484 (1999)

    Article  ADS  Google Scholar 

  68. Barucci, M., Olivieri, E., Pasca, E., Risegari, L., Ventura, G.: Thermal conductivity of Torlon between 4.2 and 300 K. Cryogenics 45(4), 295–299 (2005)

    Article  ADS  Google Scholar 

  69. Olson, J.: Thermal conductivity of some common cryostat materials between 0.05 and 2 K. Cryogenics 33(7), 729–731 (1993)

    Article  ADS  Google Scholar 

  70. Anderson, P.W., Halperin, B., Varma, C.M.: Anomalous low-temperature thermal properties of glasses and spin glasses. Phil. Mag. 25(1), 1–9 (1972)

    Article  ADS  MATH  Google Scholar 

  71. Phillips, W.: Tunneling states in amorphous solids. J. Low Temp. Phys. 7(3–4), 351–360 (1972)

    Article  ADS  Google Scholar 

  72. Woodcraft, A.L., Barucci, M., Hastings, P.R., Lolli, L., Martelli, V., Risegari, L., Ventura, G.: Thermal conductivity measurements of pitch-bonded graphites at millikelvin temperatures: finding a replacement for AGOT graphite. Cryogenics 49(5), 159–164 (2009)

    Article  ADS  Google Scholar 

  73. Choy, C.: Thermal conductivity of polymers. Polymer 18(10), 984–1004 (1977)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guglielmo Ventura .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ventura, G., Perfetti, M. (2014). How to Measure Thermal Conductivity. In: Thermal Properties of Solids at Room and Cryogenic Temperatures. International Cryogenics Monograph Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8969-1_8

Download citation

Publish with us

Policies and ethics