Skip to main content

How to Measure the Thermal Expansion Coefficient at Low Temperatures

  • Chapter
  • First Online:
Thermal Properties of Solids at Room and Cryogenic Temperatures

Part of the book series: International Cryogenics Monograph Series ((ICMS))

  • 2532 Accesses

Abstract

Thermal expansion measurements in the high temperature range have been thoroughly explored, and various experimental methods are available even as commercial instrumentation, measurements at cryogenic temperatures have been confined to the field of high-precision laboratory experiments, needing large experimental efforts and expenses, and often also suffering from intrinsic limitations. All techniques used for the measurements of thermal expansion can be divided into two categories, namely: absolute methods and relative methods. While in the former the linear changes of dimension of the sample are directly measured at various temperature, in the latter the coefficient of thermal expansion is determined through comparison with a reference materials of known thermal expansion. A lot of experimental set-ups are described in Sect. 2.1, while Sect. 2.2 some examples of measurements performed at very low temperatures are listed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kanagaraj, S., Pattanayak, S.: Measurement of the thermal expansion of metal and FRPs. Cryogenics 43(7), 399–424 (2003)

    Article  ADS  Google Scholar 

  2. Martelli, V., Bianchini, G., Natale, E., Scarpellini, D., Ventura, G.: A novel interferometric dilatometer in the 4–300 K temperature range: thermal expansion coefficient of SRM-731 borosilicate glass and stainless steel-304. Meas. Sci. Technol. 24(10), 105203 (2013)

    Article  ADS  Google Scholar 

  3. Bijl, D., Pullan, H.: A new method for measuring the thermal expansion of solids at low temperatures; the thermal expansion of copper and aluminium and the Grüneisen rule. Physica 21(1), 285–298 (1954)

    Article  ADS  Google Scholar 

  4. Sao, G., Tiwary, H.: Thermal expansion of poly (vinylidene fluoride) films. J. Appl. Phys. 53(4), 3040–3043 (1982)

    Article  ADS  Google Scholar 

  5. Rao, K., Jeyasri, M.: Measurement of linear thermal expansion of solids by a capacitance method. Indian J. Pure Appl. Phys. 15, 437–440 (1977)

    Google Scholar 

  6. Tong, H., Hsuen, H., Saenger, K., Su, G.: Thickness-direction coefficient of thermal expansion measurement of thin polymer films. Rev. Sci. Instrum. 62(2), 422–430 (1991)

    Article  ADS  Google Scholar 

  7. White, G.: Measurement of thermal expansion at low temperatures. Cryogenics 1(3), 151–158 (1961)

    Article  ADS  Google Scholar 

  8. Pott, R., Schefzyk, R.: Apparatus for measuring the thermal expansion of solids between 1.5 and 380 K. J. Phys. E: Sci. Instrum. 16(5), 444 (1983)

    Article  ADS  Google Scholar 

  9. Kroeger, F., Swenson, C.: Absolute linear thermal-expansion measurements on copper and aluminum from 5 to 320 K. J. Appl. Phys. 48(3), 853–864 (1977)

    Article  ADS  Google Scholar 

  10. Subrahmanyam, H., Subramanyam, S.: Accurate measurement of thermal expansion of solids between 77 K and 350 K by 3-terminal capacitance method. Pramana 27(5), 647–660 (1986)

    Article  ADS  Google Scholar 

  11. Neumeier, J., Bollinger, R., Timmins, G., Lane, C., Krogstad, R., Macaluso, J.: Capacitive-based dilatometer cell constructed of fused quartz for measuring the thermal expansion of solids. Rev. Sci. Instrum. 79(3), 033903–033908 (2008)

    Article  ADS  Google Scholar 

  12. Rotter, M., Muller, H., Gratz, E., Doerr, M., Loewenhaupt, M.: A miniature capacitance dilatometer for thermal expansion and magnetostriction. Rev. Sci. Instrum. 69(7), 2742–2746 (1998)

    Article  ADS  Google Scholar 

  13. Roth, P., Gmelin, E.: A capacitance displacement sensor with elastic diaphragm. Rev. Sci. Instrum. 63(3), 2051–2053 (1992)

    Article  ADS  Google Scholar 

  14. Tokiwa, Y., Grüheit, S., Jeevan, H., Stingl, C., Gegenwart, P.: Low-temperature antiferromagnetic ordering in the heavy-fermion metal YbPd. J. Phys: Conf. Ser. 273, 012062 (IOP Publishing) (2011)

    Google Scholar 

  15. Schafer, D., Thomas, G., Wudl, F.: High-resolution thermal-expansion measurements of tetrathiafulvalenetetracyanoquinodimethane (TTF-TCNQ). Phys. Rev. B 12(12), 5532 (1975)

    Article  ADS  Google Scholar 

  16. McCammon, R., Work, R.: Measurement of the dielectric properties and thermal expansion of polymers from ambient to liquid helium temperatures. Rev. Sci. Instrum. 36(8), 1169–1173 (1965)

    Article  ADS  Google Scholar 

  17. Kanagaraj, S., Pattanayak, S.: Simultaneous measurements of thermal expansion and thermal conductivity of FRPs by employing a hybrid measuring head on a GM refrigerator. Cryogenics 43(8), 451–458 (2003)

    Article  ADS  Google Scholar 

  18. García-Moreno, O., Fernández, A., Khainakov, S., Torrecillas, R.: Negative thermal expansion of lithium aluminosilicate ceramics at cryogenic temperatures. Scripta Mater. 63(2), 170–173 (2010)

    Article  Google Scholar 

  19. Keesom, W.H., Andronikashvili, E., Lifshits, E.M.: Helium. Elsevier, Amsterdam (1942)

    Google Scholar 

  20. Maxwell, J.C.: Lehrbuch der Electricität und des Magnetismus, vol. 1. J. Springer, Berlin (1883)

    Google Scholar 

  21. Hartshorn, L.: Radio-Frequency Measurements by Bridge and Resonance Methods, vol. 10. Chapman and Hall, London (1940)

    Google Scholar 

  22. Jones, R.: Some developments and applications of the optical lever. J. Sci. Instrum. 38(2), 37 (1961)

    Article  ADS  Google Scholar 

  23. James, J., Spittle, J., Brown, S., Evans, R.: A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures. Meas. Sci. Technol. 12(3), R1 (2001)

    Article  ADS  Google Scholar 

  24. Bennett, S.: An absolute interferometric dilatometer. J. Phys. E: Sci. Instrum. 10(5), 525 (1977)

    Article  ADS  Google Scholar 

  25. Imai, H., Bates, W.: Measurement of the linear thermal expansion coefficient of thin specimens. J. Phys. E: Sci. Instrum. 14(7), 883 (1981)

    Article  ADS  Google Scholar 

  26. Schödel, R.: Ultra-high accuracy thermal expansion measurements with PTB’s precision interferometer. Meas. Sci. Technol. 19(8), 084003 (2008)

    Article  ADS  Google Scholar 

  27. Cordero, J., Heinrich, T., Schuldt, T., Gohlke, M., Lucarelli, S., Weise, D., Johann, U., Braxmaier, C.: Interferometry based high-precision dilatometry for dimensional characterization of highly stable materials. Meas. Sci. Technol. 20(9), 095301 (2009)

    Article  ADS  Google Scholar 

  28. Okaji, M., Imai, H.: A practical measurement system for the accurate determination of linear thermal expansion coefficients. J. Phys. E: Sci. Instrum. 17(8), 669 (1984)

    Article  ADS  Google Scholar 

  29. Uchil, J., Mohanchandra, K., Ganesh Kumara, K., Mahesh, K., P Murali, T.: Thermal expansion in various phases of nitinol using TMA. Phys. B: Condens. Matter 270(3), 289–297 (1999)

    Google Scholar 

  30. Vijay, A.: Temperature dependence of elastic constants and volume expansion for cubic and non-cubic minerals. Phys. B 349(1), 62–70 (2004)

    Article  ADS  Google Scholar 

  31. Singh, K., Gupta, B.: A simple approach to analyse the thermal expansion in minerals under the effect of high temperature. Phys. B 334(3), 266–271 (2003)

    ADS  Google Scholar 

  32. Birch, K.: An automatic absolute interferometric dilatometer. J. Phys. E: Sci. Instrum. 20(11), 1387 (1987)

    Article  ADS  Google Scholar 

  33. Okaji, M., Inai, H.: A high-temperature dilatometer using optical heterodyne interferometry. J. Phys. E: Sci. Instrum. 20, 887–891 (1987)

    Article  ADS  Google Scholar 

  34. Bianchini, G., Barucci, M., Del Rosso, T., Pasca, E., Ventura, G.: Interferometric dilatometer for thermal expansion coefficient determination in the 4–300 K range. Meas. Sci. Technol. 17(4), 689 (2006)

    Article  ADS  Google Scholar 

  35. Ventura, G., Bianchini, G., Gottardi, E., Peroni, I., Peruzzi, A.: Thermal expansion and thermal conductivity of Torlon at low temperatures. Cryogenics 39(5), 481–484 (1999)

    Article  ADS  Google Scholar 

  36. Barucci, M., Bianchini, G., Del Rosso, T., Gottardi, E., Peroni, I., Ventura, G.: Thermal expansion and thermal conductivity of glass-fibre reinforced nylon at low temperature. Cryogenics 40(7), 465–467 (2000)

    Article  ADS  Google Scholar 

  37. Greco, V., Molesini, G., Quercioli, F.: Accurate polarization interferometer. Rev. Sci. Instrum. 66(7), 3729–3734 (1995)

    Article  ADS  Google Scholar 

  38. Raine, K., Downs, M.: Beam-splitter coatings for producing phase quadrature interferometer outputs. J. Mod. Opt. 25(7), 549–558 (1978)

    Google Scholar 

  39. Okaji, M., Yamada, N., Nara, K., Kato, H.: Laser interferometric dilatometer at low temperatures: application to fused silica SRM 739. Cryogenics 35(12), 887–891 (1995)

    Article  ADS  Google Scholar 

  40. Okaji, M., Birch, K.: Intercomparison of Interferometric Dilatometers at NRLM and NPL. Metrologia 28(1), 27 (1991)

    Article  ADS  Google Scholar 

  41. Okaji, M., Yamada, N., Kato, H., Nara, K.: Measurements of linear thermal expansion coefficients of copper SRM 736 and some commercially available coppers in the temperature range 20–300 K by means of an absolute interferometric dilatometer. Cryogenics 37(5), 251–254 (1997)

    Article  ADS  Google Scholar 

  42. Barucci, M., Gottardi, E., Olivieri, E., Pasca, E., Risegari, L., Ventura, G.: Low-temperature thermal properties of polypropylene. Cryogenics 42(9), 551–555 (2002)

    Article  ADS  Google Scholar 

  43. Gottardi, E., Bianchini, G., Peroni, I., Peruzzi, A., Ventura, G.: Thermal conductivity of polyetheretherketone at low temperatures. In: Proceedings of Tempmeco, Berlin (2001)

    Google Scholar 

  44. Corporation, Z.: Laurel Brook Road, Middlefield, Connecticut 06455–0448

    Google Scholar 

  45. GmbH, E.O.: Zur Giesserei 19–27, 76227 Karlsruhe, Germany

    Google Scholar 

  46. Elschukom, E., GmbH, Gewerbestrasse 87, D-98669 Veilsdorf

    Google Scholar 

  47. Hahn, T.A.: Thermal expansion of copper from 20 to 800 K—standard reference material 736. J. Appl. Phys. 41(13), 5096–5101 (1970)

    Article  ADS  Google Scholar 

  48. Karlmann, P.B., Dudik, M.J., Halverson, P.G., Levin, M., Marcin, M., Peters, R.D., Shaklan, S., van Buren, D.: JLP Technical Report. California Institute of Technology, (1992)

    Google Scholar 

  49. Yamada, N., Okaji, M.: Development of a low-temperature laser interferometric dilatometer using a cryogenic refrigerator. High Temp. High Pressures 32(2), 199–206 (2000)

    Article  Google Scholar 

  50. Ackerman, D., Anderson, A.: Dilatometry at low temperatures. Rev. Sci. Instrum. 53(11), 1657–1660 (1982)

    Article  ADS  Google Scholar 

  51. Bassan, M., Buonomo, B., Cavallari, G., Coccia, E., D’Antonio, S., Fafone, V., Foggetta, L., Ligi, C., Marini, A., Mazzitelli, G.: Measurement of the thermal expansion coefficient of AN Al-Mg alloy at ultra-low temperatures. Int. J. Mod. Phys. B 27(22), 1350119–1350131 (2013)

    Google Scholar 

  52. Barucci, M., Bassan, M., Buonomo, B., Cavallari, G., Coccia, E., D’Antonio, S., Fafone, V., Ligi, C., Lolli, L., Marini, A.: Experimental study of high energy electron interactions in a superconducting aluminum alloy resonant bar. Phys. Lett. A 373(21), 1801–1806 (2009)

    Article  ADS  Google Scholar 

  53. Barucci, M., Ligi, C., Lolli, L., Marini, A., Martelli, V., Risegari, L., Ventura, G.: Very low temperature specific heat of Al 5056. Phys. B 405(6), 1452–1454 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guglielmo Ventura .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ventura, G., Perfetti, M. (2014). How to Measure the Thermal Expansion Coefficient at Low Temperatures. In: Thermal Properties of Solids at Room and Cryogenic Temperatures. International Cryogenics Monograph Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8969-1_5

Download citation

Publish with us

Policies and ethics