Skip to main content

How to Measure Heat Capacity at Low Temperatures

  • Chapter
  • First Online:
Thermal Properties of Solids at Room and Cryogenic Temperatures

Part of the book series: International Cryogenics Monograph Series ((ICMS))

  • 2718 Accesses

Abstract

This chapter is devoted to the description of calorimetric techniques used to measure heat capacity of solids: pulse heat calorimetry (Sect. 2.3), relaxation calorimetry (Sect. 2.4), dual slope calorimetry (Sect. 2.5), a.c. calorimetry (Sect. 2.6), differential scanning calorimetry (Sect. 2.7). Examples of measurements of heat capacity are reported in Sects. 2.3 and 2.4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ventura, G., Lanzi, L., Peroni, I., Peruzzi, A., Ponti, G.: Low temperature thermal characteristics of thin-film Ni–Cr surface mount resistors. Cryogenics 38(4), 453–454 (1998)

    ADS  Google Scholar 

  2. Ventura, G., Risegari, L.: The art of cryogenics: low-temperature experimental techniques. Elsevier, Amsterdam (2007)

    Google Scholar 

  3. Bachmann, R., DiSalvao, F.J., Geballe, T.H., Greene, R.L., Howard, R.E., King, C.N., Kirsch, H.C., Lee, K.N., Schwall, R.E., Thomas, H.U., Zubeck, R.B.: Heat capacity measurements on small samples at low temperatures. Rev. Sci. Instr. 51, 205 (1972)

    ADS  Google Scholar 

  4. Martin, D.L.: Use of pure copper as a standard substance for low temperature calorimetry. Rev. Sci. Instrum. 38(12), 1738–1740 (1967)

    ADS  Google Scholar 

  5. Martin, D.L.: Specific heats below 3 K of pure copper, silver, and gold, and of extremely dilute gold-transition-metal alloys. Phys. Rev. 170(3), 650–655 (1968)

    ADS  Google Scholar 

  6. Martin, D.L.: Tray type calorimeter for the 15–300 K temperature range: copper as a specific heat standard in this range. Rev. Sci. Instrum. 58(4), 639–646 (1987)

    ADS  Google Scholar 

  7. Cetas, T.C., Tilford, C.R., Swenson, C.A.: Specific heats of Cu, GaAs, GaSb, InAs, and InSb from 1 to 30 K. Phys. Rev. 174(3), 835–844 (1968)

    ADS  Google Scholar 

  8. Ahlers, G.: Heat capacity of copper. Rev. Sci. Instrum. 37(4), 477–480 (1966)

    ADS  Google Scholar 

  9. Holste, J.C., Cetas, T.C., Swenson, C.A.: Effects of temperature scale differences on the analysis of heat capacity data: the specific heat of copper from 1 to 30 K. Rev. Sci. Instrum. 43(4), 670–676 (1972)

    ADS  Google Scholar 

  10. Black, J., Robinson, J., Chemist, P., Britain, G.: Lectures on the Elements of Chemistry, Delivered in the University of Edinburgh. Mundell and Son for Longman and Rees, London, and William Creech, Edinburgh (1803)

    Google Scholar 

  11. Hansen, L.D.: Toward a standard nomenclature for calorimetry. Thermochim. Acta 371(1), 19–22 (2001)

    Google Scholar 

  12. Zielenkiewicz, W.: Towards classification of calorimeters. J. Therm. Anal. Calorim. 91(2), 663–671 (2008)

    Google Scholar 

  13. Kubaschewski, O., Alcock, C., Spencer, P.: Materials Thermochemistry, vol. 6. Pergamon Press, Oxford (1993)

    Google Scholar 

  14. Nernst, W.: The energy content of solids. Ann Physik 36, 395–439 (1911)

    ADS  Google Scholar 

  15. Schnelle, W., Gmelin, E.: Critical review of small sample calorimetry: improvement by auto-adaptive thermal shield control. Thermochim. Acta 391(1), 41–49 (2002)

    Google Scholar 

  16. Cardwell, D.A., Ginley, D.S.: Handbook of superconducting materials, vol. 1. CRC Press, Boca Raton (2003)

    Google Scholar 

  17. Kishi, A., Kato, R., Azumi, T., Okamoto, H., Maesono, A., Ishikawa, M., Hatta, I., Ikushima, A.: Measurement of specific heat anomaly and characterization of high TC ceramic superconductors by AC calorimetry. Thermochim. Acta 133, 39–42 (1988)

    Google Scholar 

  18. Jin, X.C., Hor, P.H., Wu, M.K., Chu, C.W.: Modified high-pressure ac calorimetric technique. Rev. Sci. Instrum. 55(6), 993–995 (1984)

    ADS  Google Scholar 

  19. Machado, F.L.A., Clark, W.G.: Ripple method: an application of the square-wave excitation method for heat-capacity measurements. Rev. Sci. Instrum. 59(7), 1176–1181 (1988)

    ADS  Google Scholar 

  20. Kraftmakher, Y.A., Cherepanov, V.Y.: Compensation of heat losses in modulation measurements of specific heat. Teplofiz. Vys. Temp. 16, 647–649 (1978)

    Google Scholar 

  21. Euken, A.: The determination of specific heats at low temperatures. Physik. Z 10, 586–589 (1909)

    Google Scholar 

  22. Nernst, W.: Sitzungsbericht der K. Preuss. Akad. Wiss 12, 261 (1910)

    Google Scholar 

  23. Bagatskii, M.I., Minchina, I.Y., Manzhelii, V.G.: Specific heat of solid para-hydrogen. Soviet J. Low Temp. Phys. 10, 542 (1984)

    Google Scholar 

  24. Ward, L.G., Saleh, A.M., Haase, D.G.: Specific heat of solid nitrogen-argon mixtures: 50 to 100 mol% N2. Phys. Rev. B 27(3), 1832–1838 (1983)

    ADS  Google Scholar 

  25. Alkhafaji, M.T., Migone, A.D.: Heat-capacity study of butane on graphite. Phys. Rev. B 53(16), 11152–11158 (1996)

    ADS  Google Scholar 

  26. Sellers, G.J., Anderson, A.C.: Calorimetry below 1 K: the specific heat of copper. Rev. Sci. Instrum. 45(10), 1256–1259 (1974)

    ADS  Google Scholar 

  27. Filler, R.L., Lindenfeld, P., Deutscher, G.: Specific heat and thermal conductivity measurements on thin films with a pulse method. Rev. Sci. Instrum. 46(4), 439–442 (1975)

    ADS  Google Scholar 

  28. Harrison, J.P.: Cryostat for the measurement of thermal conductivity and specific heat between 0.05 and 2 K. Rev. Sci. Instrum. 39(2), 145–152 (1968)

    ADS  Google Scholar 

  29. Morin, F.J., Maita, J.P.: Specific heats of transition metal superconductors. Phys. Rev. 129(3), 1115–1120 (1963)

    ADS  Google Scholar 

  30. Al-Shibani, K.M., Sacli, O.A.: Low temperature specific heats of AgSb alloys. Phys. Status Solidi B 163(1), 99–105 (1991). doi:10.1002/pssb.2221630108

    ADS  Google Scholar 

  31. Osborne, D.W., Flotow, H.E., Schreiner, F.: Calibration and use of germanium resistance thermometers for precise heat capacity measurements from 1 to 25 k. high purity copper for interlaboratory heat capacity comparisons. Rev. Sci. Instrum. 38(2), 159–168 (1967)

    ADS  Google Scholar 

  32. Hiroo, O., Toshiaki, E., Nobuhiko, W.: Heat capacity anomaly of Ag ultrafine particles at low temperatures. J. Phys. Soc. Jpn. 59, 1695 (1990)

    Google Scholar 

  33. Albert, K., Löhneysen, H., Sander, W., Schink, H.: A calorimeter for small samples in the temperature range from 0.06 K to 3 K. Cryogenics 22(8), 417–420 (1982)

    ADS  Google Scholar 

  34. Tsujii, H., Andraka, B., Muttalib, K., Takano, Y.: Distributed τ2 effect in relaxation calorimetry. Phys. B 329, 1552–1553 (2003)

    ADS  Google Scholar 

  35. Gutsmiedl, P., Probst, C., Andres, K.: Low temperature calorimetry using an optical heating method. Cryogenics 31(1), 54–57 (1991)

    ADS  Google Scholar 

  36. Greene, R.L., King, C.N., Zubeck, R.B., Hauser, J.J.: Specific heat of granular aluminium films. Phys. Rev. B 6(9), 3297–3305 (1972)

    ADS  Google Scholar 

  37. Lipa, J., Swanson, D., Nissen, J., Chui, T.: Lambda point experiment in microgravity. Cryogenics 34(5), 341–347 (1994)

    ADS  Google Scholar 

  38. Lipa, J., Nissen, J., Stricker, D., Swanson, D., Chui, T.: Specific heat of liquid helium in zero gravity very near the lambda point. Phys. Rev. B 68(17), 174518 (2003)

    ADS  Google Scholar 

  39. Chui, T., Day, P., Hahn, I., Nash, A., Swanson, D., Nissen, J., Williamson, P., Lipa, J.: High resolution thermometers for ground and space applications. Cryogenics 34, 417–420 (1994)

    ADS  Google Scholar 

  40. Shepherd, J.P.: Analysis of the lumped τ2 effect in relaxation calorimetry. Rev. Sci. Instrum. 56(2), 273–277 (1985)

    ADS  Google Scholar 

  41. Riegel, S., Weber, G.: A dual-slope method for specific heat measurements. J. Phys. E: Sci. Instrum. 19(10), 790 (1986)

    ADS  Google Scholar 

  42. Zink, B.L., Revaz, B., Sappey, R., Hellman, F.: Thin film microcalorimeter for heat capacity measurements in high magnetic fields. Rev. Sci. Instrum. 73(4), 1841–1844 (2002)

    ADS  Google Scholar 

  43. Denlinger, D.W., Abarra, E.N., Allen, K., Rooney, P.W., Messer, M.T., Watson, S.K., Hellman, F.: Thin film microcalorimeter for heat capacity measurements from 1.5 to 800 K. Rev. Sci. Instrum. 65(4), 946–959 (1994)

    ADS  Google Scholar 

  44. Olivieri, E., Barucci, M., Beeman, J., Risegari, L., Ventura, G.: Excess heat capacity in NTD ge thermistors. J. Low Temp. Phys. 143(3–4), 153–162 (2006)

    ADS  Google Scholar 

  45. Pagliuso, P.G., Thompson, J.D., Hundley, M.F., Sarrao, J.L., Fisk, Z.: Crystal structure and low-temperature magnetic properties of R_{m}MIn_{3 m + 2} compounds (M = Rh or Ir; m = 1,2; R = Sm or Gd). Phys. Rev. B 63(5), 054426 (2001)

    ADS  Google Scholar 

  46. Catarino, I., Bonfait, G.: A simple calorimeter for fast adiabatic heat capacity measurements from 15 to 300 K based on closed cycle cryocooler. Cryogenics 40(7), 425–430 (2000)

    ADS  Google Scholar 

  47. Forgan, E.M., Nedjat, S.: Heat capacity cryostat and novel methods of analysis for small specimens in the 1.5–10 K range. Rev. Sci. Instrum. 51(4), 411–417 (1980)

    ADS  Google Scholar 

  48. Barucci, M., Di Renzone, S., Olivieri, E., Risegari, L., Ventura, G.: Very-low temperature specific heat of Torlon. Cryogenics 46(11), 767–770 (2006)

    ADS  Google Scholar 

  49. Willekers, R., Meijer, H., Mathu, F., Postma, H.: Calorimetry by means of the relaxation and dual-slope methods below 1 K: application to some high Tc superconductors. Cryogenics 31(3), 168–173 (1991)

    ADS  Google Scholar 

  50. Drulis, M.: Low temperature heat capacity measurements of U6FeH15 hydride. J. Alloys Compd. 219(1), 41–44 (1995)

    Google Scholar 

  51. Barucci, M., Brofferio, C., Giuliani, A., Gottardi, E., Peroni, I., Ventura, G.: Measurement of low temperature specific heat of crystalline TeO2 for the optimization of bolometric detectors. J. Low Temp. Phys. 123(5–6), 303–314 (2001). doi:10.1023/a:1017555615150

    ADS  Google Scholar 

  52. Kim, J.S., Stewart, G.R., Bauer, E.D., Ronning, F.: Unusual temperature dependence in the low-temperature specific heat of U3Ni3Al19. Phys. Rev. B 78(15), 153108 (2008)

    ADS  Google Scholar 

  53. Cinti, F., Affronte, M., Lascialfari, A., Barucci, M., Olivieri, E., Pasca, E., Rettori, A., Risegari, L., Ventura, G., Pini, M.G., Cuccoli, A., Roscilde, T., Caneschi, A., Gatteschi, D., Rovai, D.: Chiral and helical phase transitions in quasi-1d molecular magnets. Polyhedron 24(16–17), 2568–2572 (2005)

    Google Scholar 

  54. Nakajima, Y., Li, G., Tamegai, T.: Specific heat study of ternary iron-silicide superconductor Lu2Fe3Si5: evidence for two-gap superconductivity. Physica C 468(15), 1138–1140 (2008)

    ADS  Google Scholar 

  55. Kasahara, S., Fujii, H., Mochiku, T., Takeya, H., Hirata, K.: Specific heat of novel ternary superconductors La3Ni4X4 (X = Si and Ge). Physica C 468(15), 1231–1233 (2008)

    ADS  Google Scholar 

  56. Kasahara, S., Fujii, H., Mochiku, T., Takeya, H., Hirata, K.: Low temperature specific heat of ternary germanide superconductor La3Pd4Ge4. Phys. B 403(5), 1119–1121 (2008)

    ADS  Google Scholar 

  57. Kasahara, S., Fujii, H., Takeya, H., Mochiku, T., Thakur, A., Hirata, K.: Low temperature specific heat of superconducting ternary intermetallics La3Pd4Ge4, La3Ni4Si4, and La3Ni4Ge4 with U3Ni4Si4-type structure. J. Phys.: Condens. Matter 20(38), 385204 (2008)

    ADS  Google Scholar 

  58. Fanelli, V., Christianson, A.D., Jaime, M., Thompson, J., Suzuki, H., Lawrence, J.: Magnetic order in the induced magnetic moment system Pr3In. Phys. B 403(5), 1368–1370 (2008)

    ADS  Google Scholar 

  59. Suzuki, H., Inaba, A., Meingast, C.: Accurate heat capacity data at phase transitions from relaxation calorimetry. Cryogenics 50(10), 693–699 (2010)

    ADS  Google Scholar 

  60. Haller, E.: Advanced far-infrared detectors. Infrared Phys. Technol. 35(2), 127–146 (1994)

    ADS  Google Scholar 

  61. Lounasmaa, O.V. (ed.): Experimental principles and methods below 1 K. Academic Press, London (1974)

    Google Scholar 

  62. Keesom, P., Seidel, G.: Specific heat of germanium and silicon at low temperatures. Phys. Rev. 113(1), 33 (1959)

    ADS  Google Scholar 

  63. Wang, N., Wellstood, F.C., Sadoulet, B., Haller, E.E., Beeman, J.: Electrical and thermal properties of neutron-transmutation-doped Ge at 20 mK. Phys. Rev. B 41(6), 3761–3768 (1990)

    ADS  Google Scholar 

  64. Aubourg, É., Cummings, A., Shutt, T., Stockwell, W., Barnes Jr, P., Silva, A., Emes, J., Haller, E., Lange, A., Ross, R., Sadoulet, B., Smith, G., Wang, N., White, S., Young, B., Yvon, D.: Measurement of electron-phonon decoupling time in neutron-transmutation doped germanium at 20 mK. J. Low Temp. Phys. 93(3–4), 289–294 (1993)

    ADS  Google Scholar 

  65. Alessandrello, A., Brofferio, C., Camin, D.V., Cremonesi, O., Giuliani, A., Pavan, M., Pessina, G., Previtali, E.: Signal modelling for TeO2 bolometric detectors. J. Low Temp. Phys. 93(3–4), 207–212 (1993)

    ADS  Google Scholar 

  66. Stefanyi, P., Zammit, C., Rentzsch, R., Fozooni, P., Saunders, J., Lea, M.: Development of a Si bolometer for dark matter detection. Phys. B 194, 161–162 (1994)

    ADS  Google Scholar 

  67. Efros, A., Shklovskii, B.: Electronic Properties of Doped Semiconductors. Springer Series in Solid-State Sciences. Springer, Berlin (1984)

    Google Scholar 

  68. Marcenat, C.: Etudes calorimetrique sous champ magnetique des phases basses temperature des composes Kondo (1986)

    Google Scholar 

  69. Xu, Jc, Watson, C.H., Goodrich, R.G.: A method for measuring the specific heat of small samples. Rev. Sci. Instrum. 61(2), 814–821 (1990)

    ADS  Google Scholar 

  70. Flachbart, K., Gabáni, S., Gloos, K., Meissner, M., Opel, M., Paderno, Y., Pavlík, V., Samuely, P., Schuberth, E., Shitsevalova, N., Siemensmeyer, K., Szabó, P.: Low temperature properties and superconductivity of LuB12. J. Low Temp. Phys. 140(5–6), 339–353 (2005)

    ADS  Google Scholar 

  71. Pilla, S., Hamida, J., Sullivan, N.: A modified dual-slope method for heat capacity measurements of condensable gases. Rev. Sci. Instrum. 71(10), 3841–3845 (2000)

    ADS  Google Scholar 

  72. Gmelin, E.: Classical temperature-modulated calorimetry: a review. Thermoch. Acta 305, 1–26 (1997)

    Google Scholar 

  73. Castro, M., Puértolas, J.: Simple and accurate ac calorimeter for liquid crystals and solid samples. J. Therm. Anal. 41(6), 1245–1252 (1994)

    Google Scholar 

  74. Corbino, O.M.: Specific heat. Phys. Z. 12, 292 (1911)

    Google Scholar 

  75. Rosenthal, L.A.: Thermal response of bridgewires used in electro explosive devices. Rev. Sci. Instrum. 32(9), 1033–1036 (1961)

    ADS  Google Scholar 

  76. Filippov, L.: Procedure of measuring liquid thermal activity. Inzh.-Fiz. Zh. 3(7), 121–123 (1960)

    Google Scholar 

  77. Birge, N.O., Nagel, S.R.: Wide-frequency specific heat spectrometer. Rev. Sci. Instrum. 58(8), 1464–1470 (1987)

    ADS  Google Scholar 

  78. Jeong, Y.H., Bae, D.J., Kwon, T.W., Moon, I.K.: Dynamic specific heat near the Curie point of Gd. J. Appl. Phys. 70(10), 6166–6168 (1991)

    ADS  Google Scholar 

  79. Moon, I.K., Jeong, Y.H., Kwun, S.I.: The 3ω technique for measuring dynamic specific heat and thermal conductivity of a liquid or solid. Rev. Sci. Instrum. 67(1), 29–35 (1996)

    ADS  Google Scholar 

  80. Jewett, D.M.: Electrical heating with polyimide-insulated magnet wire. Rev. Sci. Instrum. 58(10), 1964–1967 (1987)

    ADS  Google Scholar 

  81. Cahill, D.G.: Thermal conductivity measurement from 30 to 750 K: the 3ω method. Rev. Sci. Instrum. 61(2), 802–808 (1990)

    ADS  Google Scholar 

  82. Handler, P., Mapother, D.E., Rayl, M.: AC measurement of the heat capacity of nickel near its critical point. Phys. Rev. Lett. 19(7), 356–358 (1967)

    ADS  Google Scholar 

  83. Hatta, I.: History repeats itself: progress in ac calorimetry. Thermochim. Acta 300(1), 7–13 (1997)

    Google Scholar 

  84. Pradhan, N., Duan, H., Liang, J., Iannacchione, G.: Specific heat and thermal conductivity measurements for anisotropic and random macroscopic composites of cobalt nanowires. Nanotechnology 19(48), 485712 (2008)

    Google Scholar 

  85. Hashimoto, M., Tomioka, F., Umehara, I., Fujiwara, T., Hedo, M., Uwatoko, Y.: Heat capacity measurement of CePd2Si2 under high pressure. Phys. B 378, 815–816 (2006)

    ADS  Google Scholar 

  86. Hemminger, W., Höhne, G.: Grundlagen der Kalorimetrie. Verlag Chemie, Weinheim (1979)

    Google Scholar 

  87. Sullivan, P.F., Seidel, G.: Steady-state, ac-temperature calorimetry. Phys. Rev. 173(3), 679 (1968)

    ADS  Google Scholar 

  88. Maglic, K., Cezairliyan, A., Peletsky, V.: Compendium of Thermophysical Property Measurement Methods: Vol. 1, Survey of Measurement Techniques. Plenum Press, New York (1984)

    Google Scholar 

  89. Schilling, A., Jeandupeux, O.: High-accuracy differential thermal analysis: a tool for calorimetric investigations on small high-temperature-superconductor specimens. Phys. Rev. B 52(13), 9714–9723 (1995)

    ADS  Google Scholar 

  90. Budaguan, B., Aivazov, A., Meytin, M., Sazonov, A.Y., Metselaar, J.: Relaxation processes and metastability in amorphous hydrogenated silicon investigated with differential scanning calorimetry. Phys. B 252(3), 198–206 (1998)

    ADS  Google Scholar 

  91. Sturtevant, J.M.: Biochemical applications of differential scanning calorimetry. Annu. Rev. Phys. Chem. 38(1), 463–488 (1987)

    ADS  Google Scholar 

  92. Rahm, U., Gmelin, E.: Low temperature micro-calorimetry by differential scanning. J. Therm. Anal. 38(3), 335–344 (1992)

    Google Scholar 

  93. Junod, A.: An automated calorimeter for the temperature range 80–320 K without the use of a computer. J. Phys. E: Sci. Instrum. 12(10), 945 (1979)

    ADS  Google Scholar 

  94. Junod, A., Bonjour, E., Calemczuk, R., Henry, J., Muller, J., Triscone, G., Vallier, J.: Specific heat of an YBa2Cu3O7 single crystal in fields up to 20 T. Physica C 211(3), 304–318 (1993)

    ADS  Google Scholar 

  95. Kharkovski, A., Binek, C., Kleemann, W.: Nonadiabatic heat-capacity measurements using a superconducting quantum interference device magnetometer. Appl. Phys. Lett. 77(15), 2409–2411 (2000)

    ADS  Google Scholar 

  96. Graebner, J.: Modulated-bath calorimetry. Rev. Sci. Instrum. 60(6), 1123–1128 (1989)

    ADS  Google Scholar 

  97. Lashley, J., Hundley, M., Migliori, A., Sarrao, J., Pagliuso, P., Darling, T., Jaime, M., Cooley, J., Hults, W., Morales, L.: Critical examination of heat capacity measurements made on a quantum design physical property measurement system. Cryogenics 43(6), 369–378 (2003)

    ADS  Google Scholar 

  98. Newsome Jr, R., Park, S., Cheong, S.-W., Andrei, E.: Low-temperature measurements of the specific heat capacity of a thick ferroelectric copolymer film of vinylidene fluoride and trifluoroethylene. Phys. Rev. B 77(9), 094103 (2008)

    ADS  Google Scholar 

  99. Javorský, P., Wastin, F., Colineau, E., Rebizant, J., Boulet, P., Stewart, G.: Low-temperature heat capacity measurements on encapsulated transuranium samples. J. Nucl. Mater. 344(1), 50–55 (2005)

    ADS  Google Scholar 

  100. Preston-Thomas, H.: The international temperature scale of 1990(ITS-90). Metrologia 27(1), 3–10 (1990)

    ADS  Google Scholar 

  101. Kennedy, C.A., Stancescu, M., Marriott, R.A., White, M.A.: Recommendations for accurate heat capacity measurements using a quantum design physical property measurement system. Cryogenics 47(2), 107–112 (2007)

    ADS  Google Scholar 

  102. Giazotto, F., Heikkilä, T.T., Luukanen, A., Savin, A.M., Pekola, J.P.: Opportunities for mesoscopics in thermometry and refrigeration: physics and applications. Rev. Mod. Phys. 78(1), 217 (2006)

    ADS  Google Scholar 

  103. Bachmann, R., Kirsch, H.C., Geballe, T.H.: Low temperature silicon thermometer and bolometer. Rev. Sci. Instrum. 41(4), 547–549 (1970)

    ADS  Google Scholar 

  104. Doettinger-Zech, S., Uhl, M., Sisson, D., Kapitulnik, A.: Simple microcalorimeter for measuring microgram samples at low temperatures. Rev. Sci. Instrum. 72(5), 2398–2406 (2001)

    ADS  Google Scholar 

  105. Schwall, R., Howard, R., Stewart, G.: Automated small sample calorimeter. Rev. Sci. Instrum. 46(8), 1054–1059 (1975)

    ADS  Google Scholar 

  106. Stewart, G.R.: Measurement of low-temperature specific heat. Rev. Sci. Instrum. 54(1), 1–11 (1983)

    ADS  Google Scholar 

  107. Bourgeois, O., Skipetrov, S., Ong, F., Chaussy, J.: Attojoule calorimetry of mesoscopic superconducting loops. Phys. Rev. Lett. 94(5), 057007 (2005)

    ADS  Google Scholar 

  108. Riou, O., Gandit, P., Charalambous, M., Chaussy, J.: A very sensitive microcalorimetry technique for measuring specific heat of μg single crystals. Rev. Sci. Instrum. 68(3), 1501–1509 (1997)

    ADS  Google Scholar 

  109. Fominaya, F., Fournier, T., Gandit, P., Chaussy, J.: Nanocalorimeter for high resolution measurements of low temperature heat capacities of thin films and single crystals. Rev. Sci. Instrum. 68(11), 4191–4195 (1997)

    ADS  Google Scholar 

  110. Early, S., Hellman, F., Marshall, J., Geballe, T.: A silicon on sapphire thermometer for small sample low temperature calorimetry. Physica B + C 107(1), 327–328 (1981)

    ADS  Google Scholar 

  111. Wilhelm, H., Lühmann, T., Rus, T., Steglich, F.: A compensated heat-pulse calorimeter for low temperatures. Rev. Sci. Instrum. 75(8), 2700–2705 (2004)

    ADS  Google Scholar 

  112. Tagliati, S., Rydh, A.: Absolute accuracy in membrane-based ac nanocalorimetry. Thermochim. Acta 522(1), 66–71 (2011)

    Google Scholar 

  113. Tagliati, S., Rydh, A., Xie, R., Welp, U., Kwok, W.: Membrane-based calorimetry for studies of sub-microgram samples. J. Phys.: Conf. Ser. 052256 (2009) (IOP Publishing)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guglielmo Ventura .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ventura, G., Perfetti, M. (2014). How to Measure Heat Capacity at Low Temperatures. In: Thermal Properties of Solids at Room and Cryogenic Temperatures. International Cryogenics Monograph Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8969-1_2

Download citation

Publish with us

Policies and ethics