Skip to main content

Mimicking Human-Like Leg Function in Prosthetic Limbs

  • Chapter
  • First Online:
Neuro-Robotics

Part of the book series: Trends in Augmentation of Human Performance ((TAHP,volume 2))

Abstract

Human upright locomotion is a complex behavior depending on manifold requirements. Bones, muscles, cartilage and tendons provide mechanical infrastructure. Central nervous commands, reflex mechanisms from the spinal cord level or also preflexes defined by actuator properties provide input to create motion patterns like walking or running. Due to dysvascularity, infections or traumatic events parts of the biological framework can get lost. Until the end of the twentieth century mostly passive structures were used to replace amputees lower limbs. Full functionality like in the biological system can not be provided because of missing sensory information and power source. Innovations in actuator, battery and micro electronics technology make it possible to improve prosthetic design. A first innovation was introduced with semi-active devices using microprocessor controlled dampers to modulate prosthetic joint behavior similar to isometric or eccentric muscle function. A further step is to power the joints to emulate concentric muscle function. Combined with ingenious control mechanisms this could potentially provide every possible movement task. Twenty-six powered prosthetic systems and further passive prototypes are presented in this work. Mechanical and control solutions are introduced. Amputee gait in various daily life situations using passive, semi-active and powered prostheses is compared. Areas for improvements are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CE:

contractile element

CIC:

computational intrinsic control

CoM:

center of mass

EMG:

electromyography

ER:

energy requirements

ESAR:

energy storage and return

FPWS:

fastest possible walking speed

GRF:

ground reaction force

IEC:

interactive extrinsic control

IL:

intact limb

PE:

parallel element

PEA:

parallel elastic actuator

PP:

peak power

PWS:

preferred walking speed

RL:

residual prosthetic limb

RoM:

range of motion

SACH:

solid ankle cushioned heel

SE:

series element

SEA:

series elastic actuator

TF:

transfemoral

TT:

transtibial

UPS:

unidirectional parallel spring

References

  1. Agrawal V, Gailey R, Gaunaurd I, Gailey R III, O’Toole C (2011) Weight distribution symmetry during the sit-to-stand movement of unilateral transtibial amputees. Ergonomics 54(7):656–664

    PubMed  Google Scholar 

  2. Aldridge JM, Sturdy JT, Wilken JM (2012) Stair ascent kinematics and kinetics with a powered lower leg system following transtibial amputation. Gait Posture 36(2):291–295. Elsevier

    Google Scholar 

  3. Alzaydi AA, Cheung A, Joshi N, Wong S (2011) Active prosthetic knee fuzzy logic-PID motion control, sensors and test platform design. Int J Sci Eng Res 2:1–17

    Google Scholar 

  4. Aminian K, Robert P, Jequier E, Schutz Y (1995) Estimation of speed and incline of walking using neural network. IEEE Trans Instrum Meas 44(3):743–746

    Google Scholar 

  5. Au SK, Bonato P, Herr H (2005) An EMG-position controlled system for an active ankle-foot prosthesis: an initial experimental study. In: 9th international conference on rehabilitation robotics (ICORR 2005), Chicago, 2005. IEEE, pp 375–379

    Google Scholar 

  6. Au S, Weber J, Herr H (2009) Powered ankle–foot prosthesis improves walking metabolic economy. IEEE Trans Robot 25(1):51–66

    Google Scholar 

  7. Battye C, Nightingale A, Whillis J (1955) The use of myo-electric currents in the operation of prostheses. J Bone Jt Surg, British Volume 37(3):506–510

    Google Scholar 

  8. Bellman RD, Holgate MA, Sugar TG (2008) Sparky 3: design of an active robotic ankle prosthesis with two actuated degrees of freedom using regenerative kinetics. In: 2nd IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (BioRob 2008), Scottsdale, 2008. IEEE, pp 511–516

    Google Scholar 

  9. Bellmann M, Schmalz T, Ludwigs E, Blumentritt S (2012) Stair ascent with an innovative microprocessor-controlled exoprosthetic knee joint. Biomed Tech 57:435–444

    Google Scholar 

  10. Blumentritt S, Bellmann M (2010) Potenzielle Sicherheit von aktuellen nicht-mikroprozessor-und mikroprozessorgesteuerten Prothesenkniegelenken. Orthopädie-Tech nik 61:788–799

    Google Scholar 

  11. Blumentritt S, Schmalz T, Jarasch R (2009) The safety of C-Leg: biomechanical tests. JPO J Prosthet Orthot 21(1):2

    Google Scholar 

  12. Blumentritt S, Bellmann M, Ludwigs E, Schmalz T (2012) Zur biomechanik des mikroprozessorgesteuerten prothesenkniegelenks genium. Orthopädie Technik 01:24–35

    Google Scholar 

  13. Boonstra A, Fidler V, Eisma W (1993) Walking speed of normal subjects and amputees: aspects of validity of gait analysis. Prosthet Orthot Int 17(2):78–82

    CAS  PubMed  Google Scholar 

  14. Borjian R (2009) Design, modeling, and control of an active prosthetic knee. Master’s thesis, University of Waterloo

    Google Scholar 

  15. Browning RC, Modica JR, Kram R, Goswami A et al (2007) The effects of adding mass to the legs on the energetics and biomechanics of walking. Med Sci Sports Exerc 39(3):515

    PubMed  Google Scholar 

  16. Budaker B (2012) Active driven prosthesis using a bevel helical gearbox in combination with a brushless DC-motor. In: Proceedings BMT 2012, 46. DGBMT Jahrestagung, Jena – track R. prevention and rehabilitation engineering, Jena

    Google Scholar 

  17. Budaker B (2012) Auslegung von Multidomänen-Systemen-Analyse, Modellierung und Realisierung von mechatronischen Systemen am Beispiel einer aktiven Knieprothese. Ph.D. thesis, Fraunhofer-Institut für Produktionstechnik und Automatisierung (IPA), Stuttgart

    Google Scholar 

  18. Cherelle P, Matthys A, Grosu V, Brackx B, Van Damme M, Vanderborght B, Lefeber D (2012) The AMP-Foot 2.0: a powered transtibial prosthesis that mimics intact ankle behavior. In: 9th national congress on theoretical and applied mechanics, Brussels

    Google Scholar 

  19. Childress DS (1985) Historical aspects of powered limb prostheses. Clin Prosthet Orthot 9(1):2–13

    Google Scholar 

  20. Clauser CE, McConville JT, Young JW (1969) Weight, volume, and center of mass of segments of the human body. Technical report, DTIC Document

    Google Scholar 

  21. Collins S, Kuo A (2010) Recycling energy to restore impaired ankle function during human walking. PloS One 5(2):e9307

    PubMed Central  PubMed  Google Scholar 

  22. Colombo C, Marchesin E, Vergani L, Boccafogli E, Verni G (2011) Design of an ankle prosthesis for swimming and walking. Procedia Eng 10:3503–3509

    Google Scholar 

  23. Coupland R (1997) Assistance for victims of anti-personnel mines: needs, constraints and strategy, vol 5. International Committee of the Red Cross, Geneva, pp 1–18

    Google Scholar 

  24. Crompton R, Pataky T, Savage R, D’Août K, Bennett M, Day M, Bates K, Morse S, Sellers W (2012) Human-like external function of the foot, and fully upright gait, confirmed in the 3.66 million year old laetoli hominin footprints by topographic statistics, experimental footprint-formation and computer simulation. J R Soc Interface 9(69):707–719

    PubMed Central  PubMed  Google Scholar 

  25. Cutti AG, Garofalo P, Janssens K, Davalli A, Sacchetti R, Cutti AG (2007) Biomechanical analysis of an upper limb amputee and his innovative myoelectric prosthesis: a case study concerning the otto bock “Dynamic Arm”. Orthop-Tech Q (1):6–15

    Google Scholar 

  26. Cutti A, Raggi M, Garofalo P, Giovanardi A, Filippi M, Davalli A (2008) The effects of the ‘Power Knee’ prosthesis on amputees metabolic cost of walking and symmetry of gait-preliminary results. Gait Posture 28:S38

    Google Scholar 

  27. Czerniecki J, Gitter A, Munro C (1991) Joint moment and muscle power output characteristics of below knee amputees during running: the influence of energy storing prosthetic feet. J Biomech 24(1):63–65

    CAS  PubMed  Google Scholar 

  28. Dal U, Erdogan T, Resitoglu B, Beydagi H (2010) Determination of preferred walking speed on treadmill may lead to high oxygen cost on treadmill walking. Gait Posture 31(3):366–369

    PubMed  Google Scholar 

  29. Delis AL, Carvalho J, Seisdedos CV, Borges GA, da Rocha AF (2010) Myoelectric control algorithms for leg prostheses based on data fusion with proprioceptive sensors. In: Proceedings ISSNIP biosignals and biorobotics conference, Vitoria, 2010, pp 137–142

    Google Scholar 

  30. Delis AL, Carvalho JL, da Rocha AF, Nascimento FA, Borges GA (2011) Myoelectric knee angle estimation algorithms for control of active transfemoral leg prostheses. Intechopen.com

    Google Scholar 

  31. DeVita P, Helseth J, Hortobagyi T (2007) Muscles do more positive than negative work in human locomotion. J Exp Biol 210(Pt 19):3361

    PubMed Central  PubMed  Google Scholar 

  32. Donelan J, Li Q, Naing V, Hoffer J, Weber D, Kuo A (2008) Biomechanical energy harvesting: generating electricity during walking with minimal user effort. Science 319(5864):807–810

    CAS  PubMed  Google Scholar 

  33. Duraiswami P, Orth M, Tuli S (1971) 5000 years of orthopaedics in India. Clin Orthop Relat Res 75:269

    CAS  PubMed  Google Scholar 

  34. Durfee W, Xia J, Hsiao-Wecksler E (2011) Tiny hydraulics for powered orthotics. In: IEEE international conference on rehabilitation robotics (ICORR), Zurich, 2011. IEEE, pp 1–6

    Google Scholar 

  35. Duvinage M, Castermans T, Dutoit T (2011) Control of a lower limb active prosthesis with eye movement sequences. In: IEEE symposium on computational intelligence, cognitive algorithms, mind, and brain (CCMB), Paris, 2011. IEEE, pp 1–7

    Google Scholar 

  36. Dyck W, Onyshko S, Hobson D, Winter D, Quanbury A (1975) A voluntarily controlled electrohydraulic above-knee prosthesis. Bull Prosthet Res 10(23–26):169

    Google Scholar 

  37. Eilenberg M, Geyer H, Herr H (2010) Control of a powered ankle–foot prosthesis based on a neuromuscular model. IEEE Trans Neural Syst Rehabil Eng 18(2):164–173

    PubMed  Google Scholar 

  38. Endolite. www.endolite.com

  39. Eslamy M, Grimmer M, Seyfarth A (2012) Effects of unidirectional parallel springs on required peak power and energy in powered prosthetic ankles: comparison between different active actuation concepts. In: IEEE international conference on robotics and biomimetics (ROBIO), Guangzhou

    Google Scholar 

  40. Eslamy M, Grimmer M, Rinderknecht S, Seyfarth A (2013) Does it pay to have a damper in a powered ankle prosthesis? A power-energy perspective. In: IEEE international conference on rehabilitation robotics (ICORR), Seattle

    Google Scholar 

  41. Ferris DP, Czerniecki JM, Hannaford B et al (2005) An ankle-foot orthosis powered by artificial pneumatic muscles. J Appl Biomech 21(2):189

    PubMed Central  PubMed  Google Scholar 

  42. Ferris AE, Aldridge JM, Rábago CA, Wilken JM (2012) Evaluation of a powered ankle-foot prosthetic system during walking. Arch Phys Med Rehabil 93(11):1911–1918. Elsevier

    Google Scholar 

  43. Fey N, Klute G, Neptune R (2011) The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees. Clin Biomech 26(10):1025–1032

    Google Scholar 

  44. Fradet L, Alimusaj M, Braatz F, Wolf SI (2010) Biomechanical analysis of ramp ambulation of transtibial amputees with an adaptive ankle foot system. Gait Posture 32(2):191–198

    PubMed  Google Scholar 

  45. Freedom Innovations. www.freedom-innovations.com

  46. Gailey R, Allen K, Castles J, Kucharik J, Roeder M (2008) Review of secondary physical conditions associated with lower-limb amputation and long-term prosthesis use. J Rehabil Res Dev 45(1):15

    PubMed  Google Scholar 

  47. Gates DH, Aldridge JM, Wilken JM (2013) Kinematic comparison of walking on uneven ground using powered and unpowered prostheses. Clin Biomech 28(4):467–472. Elsevier

    Google Scholar 

  48. Gefen A, Megido-Ravid M, Itzchak Y (2001) In vivo biomechanical behavior of the human heel pad during the stance phase of gait. J Biomech 34(12):1661–1665

    CAS  PubMed  Google Scholar 

  49. Geil M (2001) Energy loss and stiffness properties of dynamic elastic response prosthetic feet. JPO J Prosthet Orthot 13(3):70

    Google Scholar 

  50. Geng Y, Yang P, Xu X, Chen L (2012) Design and simulation of active transfemoral prosthesis. In: 24th Chinese control and decision conference (CCDC), Taiyuan, 2012. IEEE, pp 3724–3728

    Google Scholar 

  51. Geyer H, Herr H (2010) A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities. IEEE Trans Neural Syst Rehabil Eng 18(3):263–273

    PubMed  Google Scholar 

  52. Geyer H, Seyfarth A, Blickhan R (2003) Positive force feedback in bouncing gaits? Proc R Soc Lond Ser B Biol Sci 270(1529):2173–2183

    Google Scholar 

  53. Gitter A, Czerniecki J, DeGroot D (1991) Biomechanical analysis of the influence of prosthetic feet on below-knee amputee walking. Am J Phys Med Rehabil 70(3):142

    CAS  PubMed  Google Scholar 

  54. Goltz F, Freusberg A, Gergens E (1875) Ueber gefässerweiternde nerven. Pflügers Arch Eur J Physiol 11(1):52–99

    Google Scholar 

  55. Greitemann B, Bui-Khac H (2006) Wie haufig sturzen an der unteren Extremitat amputierte Patienten? Medizinisch Orthopadische Technik 126(5):81

    Google Scholar 

  56. Grimes DL (1979) An active multi-mode above knee prosthesis controller. Ph.D. thesis, Massachusetts Institute of Technology

    Google Scholar 

  57. Grimes D, Flowers W, Donath M (1977) Feasibility of an active control scheme for above knee prostheses. J Biomech Eng 99:215

    Google Scholar 

  58. Grimmer M, Seyfarth A (2011) Stiffness adjustment of a series elastic actuator in a knee prosthesis for walking and running: the trade-off between energy and peak power optimization. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), San Francisco. IEEE, pp 1811–1816

    Google Scholar 

  59. Grimmer M, Seyfarth A (2011) Stiffness adjustment of a series elastic actuator in an ankle-foot prosthesis for walking and running: the trade-off between energy and peak power optimization. In: IEEE international conference on robotics and automation (ICRA), Shanghai. IEEE, pp 1439–1444

    Google Scholar 

  60. Grimmer M, Eslamy M, Gliech S, Seyfarth A (2012) A comparison of parallel-and series elastic elements in an actuator for mimicking human ankle joint in walking and running. In: IEEE international conference on robotics and automation (ICRA), St. Paul, 2012. IEEE, pp 2463–2470

    Google Scholar 

  61. Ha KH, Varol HA, Goldfarb M (2011) Volitional control of a prosthetic knee using surface electromyography. IEEE Trans Biomed Eng 58(1):144–151

    PubMed  Google Scholar 

  62. Hafner B (2005) Clinical prescription and use of prosthetic foot and ankle mechanisms: a review of the literature. JPO J Prosthet Orthot 17(4):S5

    Google Scholar 

  63. Hafner B, Sanders J, Czerniecki J, Fergason J (2002) Energy storage and return prostheses: does patient perception correlate with biomechanical analysis? Clin Biomech 17(5):325–344

    Google Scholar 

  64. Hargrove L, Simon AM, Finucane SB, Lipschutz RD (2011) Myoelectric control of a powered transfemoral prosthesis during non-weight-bearing activities. In: Proceedings of the 2011 MyoElectric controls/powered prosthetics symposium, Fredericton. Myoelectric Symposium

    Google Scholar 

  65. Heller G, Günster C, Swart E (2005) Über die Häufigkeit von Amputationen unterer Extremitäten in Deutschland about the frequency of lower limb amputations. Dtsch Med Wochenschr 130(28/29):1689–1690

    CAS  PubMed  Google Scholar 

  66. Herr H, Grabowski A (2012) Bionic ankle–foot prosthesis normalizes walking gait for persons with leg amputation. Proc R Soc B Biol Sci 279(1728):457–464

    Google Scholar 

  67. Herr HM, Au SK, Dilworth P, Paluska DJ (2012) Artificial ankle-foot system with spring, variable-damping, and series-elastic actuator components. US Patent App. 13/348,570

    Google Scholar 

  68. Highsmith MJ, Kahle JT, Carey SL, Lura DJ, Dubey RV, Quillen WS (2010) Kinetic differences using a Power Knee and C-Leg while sitting down and standing up: a case report. JPO J Prosthet Orthot 22(4):237–243

    Google Scholar 

  69. Highsmith MJ, Kahle JT, Carey SL, Lura DJ, Dubey RV, Csavina KR, Quillen WS (2011) Kinetic asymmetry in transfemoral amputees while performing sit to stand and stand to sit movements. Gait Posture 34(1):86–91

    PubMed  Google Scholar 

  70. Hitt JK, Bellman R, Holgate M, Sugar TG, Hollander KW (2007) The sparky (spring ankle with regenerative kinetics) project: design and analysis of a robotic transtibial prosthesis with regenerative kinetics. In: Design engineering technology conferences and computers in information and engineering conference (IDETC/CIE), Las Vegas. ASME

    Google Scholar 

  71. Hitt J, Merlo J, Johnston J, Holgate M, Boehler A, Hollander K, Sugar T (2010) Bionic running for unilateral transtibial military amputees. DTIC document

    Google Scholar 

  72. Hitt J, Sugar T, Holgate M, Bellman R (2010) An active foot-ankle prosthesis with biomechanical energy regeneration. J Med Devices 4:011,003

    Google Scholar 

  73. Hocoma. www.hocoma.com

  74. Hof AL, van Bockel RM, Schoppen T, Postema K (2007) Control of lateral balance in walking: experimental findings in normal subjects and above-knee amputees. Gait Posture 25(2):250–258

    PubMed  Google Scholar 

  75. Holgate M, Sugar T, Bohler A (2009) A novel control algorithm for wearable robotics using phase plane invariants. In: IEEE international conference on robotics and automation (ICRA), Kobe. IEEE, pp 3845–3850

    Google Scholar 

  76. Hollander K, Sugar T (2005) Design of the robotic tendon. In: Design of medical devices conference (DMD), Minneapolis

    Google Scholar 

  77. Hoover C, Fite K (2010) Preliminary evaluation of myoelectric control of an active transfemoral prosthesis during stair ascent. In: Proceedings ASME dynamic systems and controls conference, Cambridge. Paper no. DSCC2010-4158

    Google Scholar 

  78. Hoover CD, Fulk GD, Fite KB (2013) Stair ascent with a powered transfemoral prosthesis under direct myoelectric control. Trans Mechatron 18:1191–1200

    Google Scholar 

  79. Horn G (1972) Electro-control: am EMG-controlled A/K prosthesis. Med Biol Eng Comput 10(1):61–73

    CAS  Google Scholar 

  80. Hosmer. www.hosmer.com

  81. Huang H, Zhang F, Hargrove LJ, Dou Z, Rogers DR, Englehart KB (2011) Continuous locomotion-mode identification for prosthetic legs based on neuromuscular–mechanical fusion. IEEE Trans Biomed Eng 58(10):2867–2875

    PubMed Central  PubMed  Google Scholar 

  82. Islam MR, Haque A, Amin S, Rabbani K (2011) Design and development of an EMG driven microcontroller based prosthetic leg. J Med Phys 4(1):107–114

    Google Scholar 

  83. iWalk. www.iwalkpro.com

  84. Johansson J, Sherrill D, Riley P, Bonato P, Herr H (2005) A clinical comparison of variable-damping and mechanically passive prosthetic knee devices. Am J Phys Med Rehabil 84(8):563

    PubMed  Google Scholar 

  85. Kahle JT, Highsmith M, Hubbard S (2008) Comparison of nonmicroprocessor knee mechanism versus C-Leg on prosthesis evaluation questionnaire, stumbles, falls, walking tests, stair descent, and knee preference. J Rehabil Res Dev 45(1):1

    PubMed  Google Scholar 

  86. Kuitunen S, Komi P, Kyröläinen H et al (2002) Knee and ankle joint stiffness in sprint running. Med Sci Sports Exerc 34(1):166

    PubMed  Google Scholar 

  87. Kulkarni J, Wright S, Toole C, Morris J, Hirons R (1996) Falls in patients with lower limb amputations: prevalence and contributing factors. Physiotherapy 82(2):130–136

    Google Scholar 

  88. Lambrecht BGA (2008) Design of a hybrid passive-active prosthesis for above-knee amputees. ProQuest LLC, Ann Arbor

    Google Scholar 

  89. Lambrecht BG, Kazerooni H (2009) Design of a semi-active knee prosthesis. In: IEEE international conference on robotics and automation (ICRA’09), Kobe, 2009. IEEE, pp 639–645

    Google Scholar 

  90. Latif T, Ellahi C, Choudhury T, Rabbani K (2008) Design of a cost-effective EMG driven bionic leg. In: International conference on electrical and computer engineering (ICECE 2008), Dhaka, 2008. IEEE, pp 80–85

    Google Scholar 

  91. Lawson B, Varol HA, Huff A, Erdemir E, Goldfarb M (2013) Control of stair ascent and descent with a powered transfemoral prosthesis. IEEE Trans Neural Syst Rehabil Eng 21(3):466–473. IEEE

    Google Scholar 

  92. Lee IM, Paffenbarger RS (2000) Associations of light, moderate, and vigorous intensity physical activity with longevity the Harvard Alumni Health Study. Am J Epidemiol 151(3):293–299

    CAS  PubMed  Google Scholar 

  93. Lim J (2008) The mechanical design and analysis of an active prosthetic knee. University of Waterloo, Waterloo

    Google Scholar 

  94. Lipfert S (2010) Kinematic and dynamic similarities between walking and running. Verlag Dr. Kovac, Hamburg. ISBN:978-3-8300-5030-8

    Google Scholar 

  95. Liu M, Datseris P, Huang HH (2012) A prototype for smart prosthetic legs-analysis and mechanical design. Adv Mater Res 403:1999–2006

    Google Scholar 

  96. Mai A, Commuri S (2011) Gait identification for an intelligent prosthetic foot. In: IEEE international symposium on intelligent control (ISIC), Denver, 2011. IEEE, pp 1341–1346

    Google Scholar 

  97. Mancinelli C, Patritti BL, Tropea P, Greenwald RM, Casler R, Herr H, Bonato P (2011) Comparing a passive-elastic and a powered prosthesis in transtibial amputees. In: Annual international conference of the IEEE engineering in medicine and biology society (EMBC), Boston, 2011. IEEE, pp 8255–8258

    Google Scholar 

  98. Markowitz J, Krishnaswamy P, Eilenberg MF, Endo K, Barnhart C, Herr H (2011) Speed adaptation in a powered transtibial prosthesis controlled with a neuromuscular model. Philos Trans R Soc B Biol Sci 366(1570):1621–1631

    Google Scholar 

  99. Martin J, Pollock A, Hettinger J (2010) Microprocessor lower limb prosthetics: review of current state of the art. JPO J Prosthet Orthot 22(3):183–193

    Google Scholar 

  100. Martinez Villalpando EC (2012) Design and evaluation of a biomimetic agonist-antagonist active knee prosthesis. Ph.D. thesis, Massachusetts Institute of Technology

    Google Scholar 

  101. Martinez-Villalpando E, Herr H (2009) Agonist-antagonist active knee prosthesis: a preliminary study in level-ground walking. J Rehabil Res Dev 46:361–374

    PubMed  Google Scholar 

  102. Martinez-Villalpando EC, Mooney L, Elliott G, Herr H (2011) Antagonistic active knee prosthesis. A metabolic cost of walking comparison with a variable-damping prosthetic knee. In: Annual international conference of the IEEE engineering in medicine and biology society (EMBC), Boston, 2011. IEEE, pp 8519–8522

    Google Scholar 

  103. Miller WC, Speechley M, Deathe B (2001) The prevalence and risk factors of falling and fear of falling among lower extremity amputees. Arch Phys Med Rehabil 82(8):1031–1037

    CAS  PubMed  Google Scholar 

  104. Mirfakhrai T, Madden JD, Baughman RH (2007) Polymer artificial muscles. Mater Today 10(4):30–38

    CAS  Google Scholar 

  105. Mutlu L, Uyar E, Baser O, Cetin L (2011) Modelling of an under-hip prosthesis with ankle and knee trajectory control by using human gait analysis. In: World congress, Milano, vol 18, pp 9668–9673

    Google Scholar 

  106. Nandi G, Ijspeert A, Chakraborty P, Nandi A (2009) Development of adaptive modular active leg (AMAL) using bipedal robotics technology. Robot Auton Syst 57(6):603–616

    Google Scholar 

  107. Nandy A, Mondal S, Chakraborty P, Nandi G (2012) Development of a robust microcontroller based intelligent prosthetic limb. In: Contemporary computing. Springer, pp 452–462

    Google Scholar 

  108. Navarro X, Krueger TB, Lago N, Micera S, Stieglitz T, Dario P (2005) A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J Peripher Nerv Syst 10(3):229–258

    PubMed  Google Scholar 

  109. Nielsen DH, Shurr DG, Golden JC, Meier K (1988) Comparison of energy cost and gait efficiency during ambulation in below-knee amputees using different prosthetic feet-a preliminary report. JPO J Prosthet Orthot 1(1):24

    Google Scholar 

  110. Niemitz C (2010) The evolution of the upright posture and gait-a review and a new synthesis. Naturwissenschaften 97(3):241–263

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Nigg BM, Herzog W, Herzog W (1994) Biomechanics of the musculo-skeletal system. Wiley, New York

    Google Scholar 

  112. Nolan L, Lees A (2000) The functional demands on the intact limb during walking for active trans-femoral and trans-tibial amputees. Prosthet Orthot Int 24(2):117–125

    CAS  PubMed  Google Scholar 

  113. Nolan L, Wit A, Dudziński K, Lees A, Lake M, Wychowański M (2003) Adjustments in gait symmetry with walking speed in trans-femoral and trans-tibial amputees. Gait Posture 17(2):142–151

    PubMed  Google Scholar 

  114. O’Donnell F, Brundage J, Wertheimer E, Olive D, Clark L (2012) Medical surveillance monthly report. vol 19, number 6. Technical report, DTIC Document

    Google Scholar 

  115. Orendurff MS, Segal AD, Klute GK, McDowell ML, Pecoraro JA, Czerniecki JM (2006) Gait efficiency using the C-Leg. J Rehabil Res Dev 43(2):239

    PubMed  Google Scholar 

  116. Ossur. www.ossur.com

  117. Ottobock. www.ottobock.com

  118. Pain MT, Challis JH (2001) The role of the heel pad and shank soft tissue during impacts: a further resolution of a paradox. J Biomech 34(3):327–333

    CAS  PubMed  Google Scholar 

  119. Panzenbeck JT, Klute GK (2012) A powered inverting and everting prosthetic foot for balance assistance in lower limb amputees. JPO J Prosthet Orthot 24(4):175–180

    Google Scholar 

  120. Parsan A, Tosunoglu S (2012) A novel control algorithm for ankle-foot prosthesis. In: Florida conference on recent advances in robotics, Boca Raton

    Google Scholar 

  121. Pierrynowski MR, Morrison JB (1985) A physiological model for the evaluation of muscular forces in human locomotion: theoretical aspects. Math Biosci 75(1):69–101

    Google Scholar 

  122. Pillai MV, Kazerooni H, Hurwich A (2011) Design of a semi-active knee-ankle prosthesis. In: IEEE international conference on robotics and automation (ICRA), Shanghai, 2011. IEEE, pp 5293–5300

    Google Scholar 

  123. Pitta F, Troosters T, Spruit MA, Probst VS, Decramer M, Gosselink R (2005) Characteristics of physical activities in daily life in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 171(9):972–977

    PubMed  Google Scholar 

  124. Popovic D, Tomovic R, Tepavac D, Schwirtlich L (1991) Control aspects of active above-knee prosthesis. Int J Man-Mach Stud 35(6):751–767

    Google Scholar 

  125. Postema K, Hermens H, De Vries J, Koopman H, Eisma W (1997) Energy storage and release of prosthetic feet part 1: biomechanical analysis related to user benefits. Prosthet Orthot Int 21(1):17–27

    CAS  PubMed  Google Scholar 

  126. Powers CM, Rao S, Perry J (1998) Knee kinetics in trans-tibial amputee gait. Gait Posture 8(1):1–7

    PubMed  Google Scholar 

  127. Prince F, Winter D, Sjonnensen G, Powell C, Wheeldon R (1998) Mechanical efficiency during gait of adults with transtibial amputation: a pilot study comparing the SACH, Seattle, and Golden-Ankle prosthetic feet. Development 35(2):177–185

    CAS  Google Scholar 

  128. Prinsen EC, Nederhand MJ, Rietman JS (2011) Adaptation strategies of the lower extremities of patients with a transtibial or transfemoral amputation during level walking: a systematic review. Arch Phys Med Rehabil 92(8):1311–1325

    PubMed  Google Scholar 

  129. Proteor. www.proteor.com

  130. Purath J, Michaels MA, McCabe G, Wilbur J (2004) A brief intervention to increase physical activity in sedentary working women une intervention ponctuelle en vue daccroitre lactivite physique chez les travailleuses sedentaires. CJNR (Can J Nurs Res) 36(1):76–91

    Google Scholar 

  131. Robbins C, Vreeman D, Sothmann M, Wilson S, Oldridge N (2009) A review of the long-term health outcomes associated with war-related amputation. Mil Med 174(6):588–592

    PubMed  Google Scholar 

  132. Robertson DGE (2004) Research methods in biomechanics. Human Kinetics Publishers, Champaign

    Google Scholar 

  133. Rusaw D, Ramstrand N (2011) Motion-analysis studies of transtibial prosthesis users: a systematic review. Prosthet Orthot Int 35(1):8–19

    PubMed  Google Scholar 

  134. Sabatini AM, Martelloni C, Scapellato S, Cavallo F (2005) Assessment of walking features from foot inertial sensing. IEEE Trans Biomed Eng 52(3):486–494

    PubMed  Google Scholar 

  135. Sadeghi H, Allard P, Prince F, Labelle H (2000) Symmetry and limb dominance in able-bodied gait: a review. Gait Posture 12(1):34

    CAS  PubMed  Google Scholar 

  136. Sanderson D, Martin P (1996) Joint kinetics in unilateral below-knee amputee patients during running. Arch Phys Med Rehabil 77(12):1279–1285

    CAS  PubMed  Google Scholar 

  137. Sauren J, Lieby B et al (2010) Motion analysis of the 2009 men’s 100 m world record. PhyDid B-Didaktik der Physik-Beiträge zur DPG-Frühjahrstagung

    Google Scholar 

  138. Sawicki GS, Ferris DP (2009) A pneumatically powered knee-ankle-foot orthosis (KAFO) with myoelectric activation and inhibition. J Neuroeng Rehabil 6(1):23

    PubMed Central  PubMed  Google Scholar 

  139. Schaarschmidt M, Lipfert SW, Meier-Gratz C, Scholle HC, Seyfarth A (2012) Functional gait asymmetry of unilateral transfemoral amputees. Hum Mov Sci 31(4):907–917. Elsevier

    Google Scholar 

  140. Schinder A, Genao C, Semmelroth S (2011) Methodology for control and analysis of an active foot-ankle prosthesis. In: Proceedings of the national conference on undergraduate research (NCUR) 2011, Ithaca College, New York, 31 Mar–2 Apr 2011, pp 2011–2018

    Google Scholar 

  141. Schmalz T, Blumentritt S, Jarasch R et al (2002) Energy expenditure and biomechanical characteristics of lower limb amputee gait: the influence of prosthetic alignment and different prosthetic components. Gait Posture 16(3):255

    PubMed  Google Scholar 

  142. Schneider K, Hart T, Zernicke R, Setoguchi Y, Oppenheim W (1993) Dynamics of below-knee child amputee gait: SACH foot versus Flex foot. J Biomech 26(10):1191–1204

    CAS  PubMed  Google Scholar 

  143. Segal A, Orendurff M, Klute G, McDowell M, Pecoraro J, Shofer J, Czerniecki J (2006) Kinematic and kinetic comparisons of transfemoral amputee gait using C-Leg®; and Mauch SNS®; prosthetic knees. J Rehabil Res Dev 43(7):857

    PubMed  Google Scholar 

  144. Seroussi R, Gitter A, Czerniecki J, Weaver K (1996) Mechanical work adaptations of above-knee amputee ambulation. Arch Phys Med Rehabil 77(11):1209–1214

    CAS  PubMed  Google Scholar 

  145. Seyfarth A, Geyer H, Herr H (2003) Swing-leg retraction: a simple control model for stable running. J Exp Biol 206(15):2547–2555

    PubMed  Google Scholar 

  146. Shen X, Christ D (2011) Design and control of chemomuscle: a liquid-propellant-powered muscle actuation system. J Dyn Syst Meas Control 133(2):021,006–021,006

    Google Scholar 

  147. Sherrington CS (1910) Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. J Physiol 40(1–2):28

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Silverman A, Fey N, Portillo A, Walden J, Bosker G, Neptune R (2008) Compensatory mechanisms in below-knee amputee gait in response to increasing steady-state walking speeds. Gait Posture 28(4):602–609

    PubMed  Google Scholar 

  149. Springactive. www.springactive.com

  150. Sup F, Bohara A, Goldfarb M (2008) Design and control of a powered transfemoral prosthesis. Int J Robot Res 27(2):263–273

    Google Scholar 

  151. Sup F, Varol H, Mitchell J, Withrow T, Goldfarb M (2009) Self-contained powered knee and ankle prosthesis: initial evaluation on a transfemoral amputee. In: IEEE international conference on rehabilitation robotics (ICORR), Kyoto. IEEE, pp 638–644

    Google Scholar 

  152. Sup F, Varol HA, Goldfarb M (2011) Upslope walking with a powered knee and ankle prosthesis: initial results with an amputee subject. IEEE Trans Neural Syst Rehabil Eng 19(1):71–78

    PubMed  Google Scholar 

  153. Suzuki R, Sawada T, Kobayashi N, Hofer E (2011) Control method for powered ankle prosthesis via internal model control design. In: International conference on mechatronics and automation (ICMA), Beijing. IEEE, pp 237–242

    Google Scholar 

  154. Svanström L (1974) Falls on stairs: an epidemiological accident study. Scand J Public Health 2(3):113–120

    Google Scholar 

  155. Svensson W, Holmberg U (2006) An autonomous control system for a prosthetic foot ankle. In: 4th IFAC symposium on mechatronic systems, Heidelberg, 2006. International Federation of Automatic Control (IFAC), pp 856–861

    Google Scholar 

  156. Svensson W, Holmberg U (2010) Estimating ground inclination using strain sensors with Fourier series representation. J Robot 2010:1–8

    Google Scholar 

  157. The amputee statistical database for the United Kingdom 2006/07 (2009). http://www.limbless-statistics.org/documents/Report2006-07.pdf

  158. Theeven PJR (2012) Functional added value of microprocessor-controlled prosthetic knee joints. Ph.D. thesis, Maastricht University

    Google Scholar 

  159. Thomas G, Simon D (2012) Inertial thigh angle sensing for a semi-active knee prosthesis. In: Proceedings of the IASTED international symposia imaging and signal processing in health care and technology (ISPHT 2012), Baltimore. ACTA Press

    Google Scholar 

  160. Tudor-Locke C, Bassett J (2004) How many steps/day are enough?: preliminary pedometer indices for public health. Sports Med 34(1):1–8

    PubMed  Google Scholar 

  161. Unal R, Carloni R, Behrens S, Hekman E, Stramigioli S, Koopman H (2012) Towards a fully passive transfemoral prosthesis for normal walking. In: 4th IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (BioRob), Rome, 2012. IEEE, pp 1949–1954

    Google Scholar 

  162. Vallery H, Burgkart R, Hartmann C, Mitternacht J, Riener R, Buss M (2011) Complementary limb motion estimation for the control of active knee prostheses. Biomedizinische Technik/Biomed Eng 56(1):45–51

    Google Scholar 

  163. Van den Bogert AJ (2003) Exotendons for assistance of human locomotion. Biomed Eng Online 2(17):1–8

    Google Scholar 

  164. van der Linde H, Hofstad CJ, Geurts AC, Postema K, Geertzen JH, Van Limbeek J et al (2004) A systematic literature review of the effect of different prosthetic components on human functioning with a lower-limb prosthesis. J Rehabil Res Dev 41(4):555–570

    PubMed  Google Scholar 

  165. Vanicek N, Strike S, McNaughton L, Polman R (2009) Gait patterns in transtibial amputee fallers vs. non-fallers: biomechanical differences during level walking. Gait Posture 29(3):415–420

    PubMed  Google Scholar 

  166. van Ingen Schenau Gv, Bobbert M, Rozendal R (1987) The unique action of bi-articular muscles in complex movements. J Anat 155:1

    Google Scholar 

  167. Varol H, Sup F, Goldfarb M (2009) Powered sit-to-stand and assistive stand-to-sit framework for a powered transfemoral prosthesis. In: IEEE international conference on rehabilitation robotics (ICORR), Kyoto. IEEE, pp 645–651

    Google Scholar 

  168. Varol HA, Sup F, Goldfarb M (2010) Multiclass real-time intent recognition of a powered lower limb prosthesis. IEEE Trans Biomed Eng 57(3):542–551

    PubMed Central  PubMed  Google Scholar 

  169. Verhoeff T (2002) ICRC physical rehabilitation programmes, annual report 2001

    Google Scholar 

  170. Versluys R, Lenaerts G, Van Damme M, Jonkers I, Desomer A, Vanderborght B, Peeraer L, Van der Perre G, Lefeber D (2009) Successful preliminary walking experiments on a transtibial amputee fitted with a powered prosthesis. Prosthet Orthot Int 33(4):368–377

    PubMed  Google Scholar 

  171. Vickers DR, Palk C, McIntosh A, Beatty K (2008) Elderly unilateral transtibial amputee gait on an inclined walkway: a biomechanical analysis. Gait Posture 27(3):518–529

    PubMed  Google Scholar 

  172. Vrieling A, Van Keeken H, Schoppen T, Otten E, Halbertsma J, Hof A, Postema K (2008) Uphill and downhill walking in unilateral lower limb amputees. Gait Posture 28(2):235–242

    CAS  PubMed  Google Scholar 

  173. Wang S, van Dijk W, van der Kooij H (2011) Spring uses in exoskeleton actuation design. In: IEEE international conference on rehabilitation robotics (ICORR), Zurich. IEEE, pp 1–6

    Google Scholar 

  174. Waters RL, Mulroy S (1999) The energy expenditure of normal and pathologic gait. Gait Posture 9(3):207–231

    CAS  PubMed  Google Scholar 

  175. Waycaster G, Wu SK, Xiangrong S (2011) Design and control of a pneumatic artificial muscle actuated above-knee prosthesis. J Med Devices 5(3):031003

    Google Scholar 

  176. Webster J, Levy C, Bryant P, Prusakowski P (2001) Sports and recreation for persons with limb deficiency. Arch Phys Med Rehabil 82(3):S38–S44

    CAS  PubMed  Google Scholar 

  177. Wilson AB (1992) History of amputation surgery and prosthetics. In: Atlas of limb prosthetics: surgical, prosthetic, and rehabilitation principles. Mosby-Year Book, St. Louis, pp 3–16

    Google Scholar 

  178. Winter DA (2009) Biomechanics and motor control of human movement. Wiley, Hoboken

    Google Scholar 

  179. Winter DA, Sienko SE (1988) Biomechanics of below-knee amputee gait. J Biomech 21(5):361–367

    CAS  PubMed  Google Scholar 

  180. Wolf EJ, Everding VQ, Linberg AL, Schnall BL, Czerniecki JM, Gambel JM et al (2012) Assessment of transfemoral amputees using C-Leg and Power Knee for ascending and descending inclines and steps. J Rehabil Res Dev 49(6):831–842

    PubMed  Google Scholar 

  181. Wolf EJ, Everding VQ, Linberg AA, Czerniecki JM, Gambel COL (2013) Comparison of the Power Knee and C-Leg during step-up and sit-to-stand tasks. Gait Posture 38(3):397–402. Elsevier

    Google Scholar 

  182. Yuan K, Zhu J, Wang Q, Wang L (2011) Finite-state control of powered below-knee prosthesis with ankle and toe. In: World congress, Milano, vol 18, pp 2865–2870

    Google Scholar 

  183. Zajac FE et al (1989) Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng 17(4):359

    CAS  PubMed  Google Scholar 

  184. Zelik K, Collins S, Adamczyk P, Segal A, Klute G, Morgenroth D, Hahn M, Orendurff M, Czerniecki J, Kuo A (2011) Systematic variation of prosthetic foot spring affects center-of-mass mechanics and metabolic cost during walking. IEEE Trans Neural Syst Rehabil Eng 19(4):411–419

    PubMed  Google Scholar 

  185. Zhang F, Liu M, Huang H (2012) Preliminary study of the effect of user intent recognition errors on volitional control of powered lower limb prostheses. In: Annual international conference of the IEEE engineering in medicine and biology Society (EMBC), San Diego, 2012. IEEE, pp 2768–2771

    Google Scholar 

  186. Zhu J, Wang Q, Wang L (2010) Pantoe 1: biomechanical design of powered ankle-foot prosthesis with compliant joints and segmented foot. In: IEEE/ASME international conference on advanced intelligent mechatronics (AIM), Montreal. IEEE, pp 31–36

    Google Scholar 

  187. Ziegler-Graham K, MacKenzie E, Ephraim P, Travison T, Brookmeyer R et al (2008) Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch Phys Med Rehabil 89(3):422

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Grimmer .

Editor information

Editors and Affiliations

Appendix

Appendix

Table 5.3 Overview on active prosthetic ankle developments
Table 5.4 Overview on active prosthetic knee developments

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Grimmer, M., Seyfarth, A. (2014). Mimicking Human-Like Leg Function in Prosthetic Limbs. In: Artemiadis, P. (eds) Neuro-Robotics. Trends in Augmentation of Human Performance, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8932-5_5

Download citation

Publish with us

Policies and ethics