Skip to main content

Considering Limb Impedance in the Design and Control of Prosthetic Devices

  • Chapter
  • First Online:
Neuro-Robotics

Part of the book series: Trends in Augmentation of Human Performance ((TAHP,volume 2))

Abstract

The mechanical properties of our limbs and how those properties are regulated by the nervous system endow us with the ability to interact with our environment in numerous predictable and effective ways. While there have been many recent advances in the design and control of prosthetic limbs, none yet have the capacity to regulate their mechanical impedance over the rangeachievable by human limbs, or to replicate the functions that neuromuscular impedance control makes possible. The premise of this chapter is that designing prosthetic limbs capable of replicating the essential functions endowed by impedance control would lead to more natural and capable devices. The chapter summarizes current understanding of how human limb impedance is regulated, and attempts at replicating the functions afforded by impedance control in prosthetic limbs. It also highlights challenges and possible solutions in each of these areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abul-Haj CJ, Hogan N (1990) Functional assessment of control-systems for cybernetic elbow prostheses – Part I: description of the technique. IEEE Trans Biomed Eng 37:1025–1036

    CAS  PubMed  Google Scholar 

  2. Abul-Haj CJ, Hogan N (1990) Functional assessment of control systems for cybernetic elbow prostheses–Part II: application of the technique. IEEE Trans Biomed Eng 37:1037–1047. doi:10.1109/TBME.1990.1438510

    CAS  PubMed  Google Scholar 

  3. Aghasadeghi N, Zhao H, Hargrove LJ, et al (2013) Learning impedance controller parameters for lower-limb prostheses. In: IEEE/RSJ International conference on intelligent robots and systems (IROS), Tokyo, pp 1–7

    Google Scholar 

  4. Akazawa K, Milner TE, Stein RB (1983) Modulation of reflex EMG and stiffness in response to stretch of human finger muscle. J Neurophysiol 49:16–27

    CAS  PubMed  Google Scholar 

  5. Albu-Schaffer A, Eiberger O, Grebenstein M et al (2008) Soft robotics – From torque feedback-controlled lightweight robots to intrinsically compliant systems. IEEE Robot Autom Mag 15:20–30. doi:10.1109/Mra.2008.927979

    Google Scholar 

  6. Allum JHJ, Mauritz K-H, Vogele H (1982) The mechanical effectiveness of short latency reflexes in human triceps surae muscles revealed by ischaemia and vibration. Exp Brain Res 48:153–156

    CAS  PubMed  Google Scholar 

  7. Au SK, Weber J, Herr H (2009) Powered ankle–foot prosthesis improves walking metabolic economy. IEEE Trans Robot 25:51–66. doi:10.1109/TRO.2008.2008747

    Google Scholar 

  8. Bennett DJ, Hollerbach JM, Xu Y, Hunter IW (1992) Time-varying stiffness of human elbow joint during cyclic voluntary movement. Exp Brain Res 88:433–442

    CAS  PubMed  Google Scholar 

  9. Biddiss E, Beaton D, Chau T (2007) Consumer design priorities for upper limb prosthetics. Disabil Rehabil Assist Technol 2:346–357. doi:10.1080/17483100701714733

    PubMed  Google Scholar 

  10. Biddiss E, Chau T (2007) Upper-limb prosthetics: critical factors in device abandonment. Am J Phys Med Rehabil Assoc Acad Phys 86:977–987. doi:10.1097/PHM.0b013e3181587f6c

    Google Scholar 

  11. Biddiss EA, Chau TT (2007) Upper limb prosthesis use and abandonment: a survey of the last 25 years. Prosthet Orthot Int 31:236–257. doi:10.1080/03093640600994581

    PubMed  Google Scholar 

  12. Blank A, Okamura AM, Whitcomb LL (2011) Task-dependent impedance improves user performance with a virtual prosthetic arm. IEEE International Conference on Robotics and Automation (ICRA), Shanghai, pp 2235–2242

    Google Scholar 

  13. Bloebaum R (2006) International symposium on osseointegration. Chicago, IL

    Google Scholar 

  14. Bowker JH, Pritham CH (2004) The history of amputation surgery and prosthetics. In: Smith DG, Michael JW, Bowker JH (eds) Atlas of amputations and limb deficiencies, 3rd edn. American Academy of Orthopaedic Surgeons, Rosemont, pp 3–19

    Google Scholar 

  15. Branemark PI (1983) Osseointegration and its experimental background. J Prosthet Dent 50:399–410

    CAS  PubMed  Google Scholar 

  16. Branemark PI, Rydevik BL, Myers RR (2001) Osseointegration in skeleta reconstruction and rehabilitation: a review. J Rehabil Res Dev 38:175–191

    CAS  PubMed  Google Scholar 

  17. Branemark PI, Rydevik BL, Skalak R (1997) Osseointegration in the skeletal reconstruction and joint replacement. Quintessence Publishing Co, Chicago

    Google Scholar 

  18. Bunderson NE, Burkholder TJ, Ting LH (2008) Reduction of neuromuscular redundancy for postural force generation using an intrinsic stability criterion. J Biomech 41:1537–1544. doi:10.1016/j.jbiomech.2008.02.004

    PubMed  Google Scholar 

  19. Burdet E, Osu R, Franklin DW et al (2001) The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature 414:446–449

    CAS  PubMed  Google Scholar 

  20. Carloni R, Visser LC, Member S et al (2012) Variable stiffness actuators: a port-based power-flow analysis. IEEE Trans Robot 28:1–11

    Google Scholar 

  21. Carter RR, Crago PE, Keith MW (1990) Stiffness regulation by reflex action in the normal human hand. J Neurophysiol 64:105–118

    CAS  PubMed  Google Scholar 

  22. Cheney PD, Fetz EE (1984) Corticomotoneuronal cells contribute to long-latency stretch reflexes in the rhesus monkey. J Physiol Lond 349:249–272

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Christenson J (2010) Design and analysis of a series elastic actuator for use as a prosthetic wrist with accompanying control strategies. MS thesis, Northwestern University

    Google Scholar 

  24. Clancy EA, Bouchard S, Rancourt D (2001) Estimation and application of EMG amplitude during dynamic contractions. IEEE Eng Med Biol Mag 20:47–54

    CAS  PubMed  Google Scholar 

  25. Colebatch JG, McCloskey DI (1987) Maintenance of constant arm position or force: reflex and volitional components in man. J Physiol Lond 386:247–261

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Colgate JE (1993) Robust impedance shaping telemanipulation. IEEE Trans Robot Autom 9:374–384

    Google Scholar 

  27. Colgate JE, Hogan N (1988) Robust control of dynamically interacting systems. Int J Control 48:65–88

    Google Scholar 

  28. Controzzi M, Cipriani C, Carrozza MC (2010) Miniaturized non-back-drivable mechanism for robotic applications. Mech Mach Theory 45:1395–1406. doi:10.1016/j.mechmachtheory.2010.05.008

    Google Scholar 

  29. Cui L, Perreault EJ, Maas H, Sandercock TG (2008) Modeling short-range stiffness of feline lower hindlimb muscles. J Biomech 41:1945–1952. doi:10.1016/j.jbiomech.2008.03.024

    PubMed Central  PubMed  Google Scholar 

  30. Cui L, Perreault EJ, Sandercock TG (2007) Motor unit composition has little effect on the short-range stiffness of feline medial gastrocnemius muscle. J Appl Physiol 103:796–802. doi:10.1152/japplphysiol.01451.2006

    PubMed Central  PubMed  Google Scholar 

  31. Cupo ME, Sheredos S (1998) Clinical evaluation of a new, above-elbow, body-powered prosthetic arm: a final report. J Rehabil Res Dev 35:431–446

    CAS  PubMed  Google Scholar 

  32. Darainy M, Towhidkhah F, Ostry DJ (2007) Control of hand impedance under static conditions and during reaching movement. J Neurophysiol 97:2676–2685. doi:10.1152/jn.01081.2006

    PubMed  Google Scholar 

  33. Dietz V, Discher M, Trippel M (1994) Task-dependent modulation of short- and long-latency electromyographic responses in upper limb muscles. Electroencephalogr Clin Neurophysiol 93:49–56

    CAS  PubMed  Google Scholar 

  34. Doemges F, Rack PMH (1992) Changes in the stretch reflex of the human first dorsal interosseous muscle during different tasks. J Physiol Lond 447:563–573

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Eilenberg MF, Geyer H, Herr H (2010) Control of a powered ankle-foot prosthesis based on a neuromuscular model. IEEE Trans Neural Syst Rehabil Eng 18:164–173. doi:10.1109/TNSRE.2009.2039620

    PubMed  Google Scholar 

  36. English CE, Russell D (1999) Mechanics and stiffness limitations of a variable stiffness actuator for use in prosthetic limbs. Mech Mach Theory 34:7–25

    Google Scholar 

  37. Evarts EV (1973) Motor cortex reflexes associated with learned movement. Science 179:501–503

    CAS  PubMed  Google Scholar 

  38. Flash T, Mussa-Ivaldi FA (1990) Human arm stiffness characteristics during the maintenance of posture. Exp Brain Res 82:315–326

    CAS  PubMed  Google Scholar 

  39. Franklin DW, Liaw G, Milner TE et al (2007) Endpoint stiffness of the arm is directionally tuned to instability in the environment. J Neurosci 27:7705–7716

    CAS  PubMed  Google Scholar 

  40. Fryer CM, Michael JW (2004) Harnessing and controls for body-powered devices. In: Smith DG, Michael JW, Bowker JH (eds) Atlas of amputations and limb deficiencies, 3rd edn. American Academy of Orthopaedic Surgeons, Rosemont, pp 131–143

    Google Scholar 

  41. Fryer CM, Stark GE, Michael JW (2004) Body-powered components. In: Smith DG, Michael JW, Bowker JH (eds) Atlas of amputations and limb deficiencies, 3rd edn. American Academy of Orthopaedic Surgeons, Rosemont, pp 131–143

    Google Scholar 

  42. Gomi H, Kawato M (1996) Equilibrium-point control hypothesis examined by measured arm stiffness during multijoint movement [see comments]. Science 272:117–120

    CAS  PubMed  Google Scholar 

  43. Gomi H, Konno T (1998) Real time estimation of time-varying human multijoint arm viscoelasticity during movements. Proc Int Conf IEEE/EMBS 20:2341–2342

    Google Scholar 

  44. Gomi H, Osu R (1998) Task-dependent viscoelasticity of human multijoint arm and its spatial characteristics for interaction with environments. J Neurosci 18:8965–8978

    CAS  PubMed  Google Scholar 

  45. Hirzinger G, Sporer N, Albu-Schaffer A, et al (2002) DLR’s torque-controlled light weight robot III – Are we reaching the technological limits now? International conference on robotics and automation, pp 1710–1716

    Google Scholar 

  46. Hitt JK, Sugar TG, Holgate M, Bellman R (2010) An active foot-ankle prosthesis with biomechanical energy regeneration. J Med Devices Trans ASME 4:011003. doi:10.1115/1.4001139

    Google Scholar 

  47. Hoffer JA, Andreassen S (1981) Regulation of soleus muscle stiffness in premammillary cats: intrinsic and reflex components. J Neurophysiol 45:267–285

    CAS  PubMed  Google Scholar 

  48. Hogan N (1990) Mechanical impedance of single-and multi-articular systems. In: Winters JM, Woo SLY (eds) Multiple muscle systems. Springer, New York

    Google Scholar 

  49. Hogan N (1985) The mechanics of multi-joint posture and movement control. Biol Cybern 52:315–331

    CAS  PubMed  Google Scholar 

  50. Hogan N, Buerger S (2005) Impedance and interaction control. In: Kurfess T (ed) Robotics and automation handbook. CRC Press, New York

    Google Scholar 

  51. Hogan N (1982) Prostheses should have adaptively controllable impedance. Proceedings of IFAC symposium, Columbus, OH, pp 155–162

    Google Scholar 

  52. Houk JC (1972) The phylogeny of muscular control configurations. In: Houk JC (ed) Biocybernetics IV. Fischer, Jena, pp 125–144

    Google Scholar 

  53. Hu X, Murray WM, Perreault EJ (2011) Muscle short-range stiffness can be used to estimate the endpoint stiffness of the human arm. J Neurophysiol 105:1633–1641. doi:10.1152/jn.00537.2010

    PubMed Central  PubMed  Google Scholar 

  54. Hu X, Murray WM, Perreault EJ (2012) Biomechanical constraints on the feedforward regulation of endpoint stiffness. J Neurophysiol. doi:10.1152/jn.00330.2012

    PubMed Central  PubMed  Google Scholar 

  55. Hunter IW, Kearney RE (1982) Dynamics of human ankle stiffness: variation with mean ankle torque. J Biomech 15:747–752

    CAS  PubMed  Google Scholar 

  56. Joyce GC, Rack PMH, Ross HF (1974) The forces generated at the human elbow joint in response to imposed sinusoidal movements of the forearm. J Physiol 240:351–374

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Kapp S, Fergason JR (2004) Transtibial amputation: prosthetic management. In: Smith DG, Michael JW, Bowker JH (eds) Atlas of amputation and limb deficiencies, 3rd edn. American Academy of Orthopaedic Surgeons, Rosemont, pp 503–515

    Google Scholar 

  58. Kearney RE, Hunter IW (1990) System identification of human joint dynamics. CRC Crit Rev Biomed Eng 18:55–87

    CAS  Google Scholar 

  59. Kearney RE, Stein RB, Parameswaran L (1997) Identification of intrinsic and reflex contributions to human ankle stiffness dynamics. IEEE Trans Biomed Eng 44:493–504

    CAS  PubMed  Google Scholar 

  60. Kirsch RF, Boskov D, Rymer WZ (1994) Muscle stiffness during transient and continuous movements of cat muscle: perturbation characteristics and physiological relevance. IEEE Trans Biomed Eng 41:758–770

    CAS  PubMed  Google Scholar 

  61. Koopman B, Van Asseldonk EHF, Van der Kooij H (2010) In vivo measurement of human knee and hip dynamics using MIMO system identification. IEEE EMBC conference, Buenos Aires, pp 3426–3429

    Google Scholar 

  62. Krutky MA, Ravichandran VJ, Trumbower RD, Perreault EJ (2010) Interactions between limb and environmental mechanics influence stretch reflex sensitivity in the human arm. J Neurophysiol 103:429–440. doi:10.1152/jn.00679.2009

    PubMed Central  PubMed  Google Scholar 

  63. Krutky MA, Trumbower RD, Perreault EJ (2012) Influence of environmental stability on the regulation of endpoint impedance during the maintenance of arm posture (in revision)

    Google Scholar 

  64. Kurtzer IL, Pruszynski JA, Scott SH (2008) Long-latency reflexes of the human arm reflect an internal model of limb dynamics. Curr Biol 18:449–453. doi:10.1016/j.cub.2008.02.053

    CAS  PubMed  Google Scholar 

  65. Lake C, Miguelez JM (2003) Comparative analysis of microprocessors in upper limb prosthetics. J Prosthet Orthot 15:48–63. doi:10.1097/00008526-200304000-00004

    Google Scholar 

  66. LeBlanc M (1988) Use of prosthetic prehensors. Prosthet Orthot Int 12:152–154

    CAS  PubMed  Google Scholar 

  67. Lee H, Ho P, Rastgaar MA et al (2014) Multivariable static ankle mechanical impedance with active muscles. IEEE TNSRE 22(1):44–52. doi:10.1109/TNSRE.2013.2262689

  68. Lee H, Ho P, Rastgaar MA et al (2011) Multivariable static ankle mechanical impedance with relaxed muscles. J Biomech 44:1901–1908. doi:10.1016/j.jbiomech.2011.04.028

    PubMed  Google Scholar 

  69. Lee H, Hogan N (2013) Investigation of human ankle mechanical impedance during locomotion using a wearable ankle robot. In: IEEE international conference on robotics and automation (ICRA), pp 2636–2641

    Google Scholar 

  70. Ludvig D, Cathers I, Kearney RE (2007) Voluntary modulation of human stretch reflexes. Exp Brain Res 183:201–213. doi:10.1007/s00221-007-1030-0

    PubMed  Google Scholar 

  71. MacNeil JB, Kearney RE, Hunter IW (1992) Identification of time-varying biological systems from ensemble data. IEEE Trans Biomed Eng 39:1213–1225. doi:10.1109/10.184697

    CAS  PubMed  Google Scholar 

  72. McIntyre J, Mussa-Ivaldi FA, Bizzi E (1996) The control of stable arm postures in the multi-joint arm. Exp Brain Res 110:248–264

    CAS  PubMed  Google Scholar 

  73. Micera S, Carpaneto J, Raspopovic S (2010) Control of hand prostheses using peripheral information. IEEE Rev Biomed Eng 3:48–68

    PubMed  Google Scholar 

  74. Misiaszek JE (2006) Control of frontal plane motion of the hindlimbs in the unrestrained walking cat. J Neurophysiol 96:1816–1828. doi:10.1152/jn.00370.2006

    PubMed  Google Scholar 

  75. Morgan DL (1977) Separation of active and passive components of short-range stiffness of muscle. Am J Physiol 232:C45–C49

    CAS  PubMed  Google Scholar 

  76. Mugge W, Schuurmans J, Schouten AC, Van Der Helm FCT (2009) Sensory weighting of force and position feedback in human motor control tasks. J Neurosci 29:5476–5482. doi:10.1523/JNEUROSCI.0116-09.2009

    CAS  PubMed  Google Scholar 

  77. Mussa-Ivaldi FA, Hogan N, Bizzi E (1985) Neural, mechanical, and geometric factors subserving arm posture in humans. J Neurosci 5:2732–2743

    CAS  PubMed  Google Scholar 

  78. Newman WS (1992) Stability and performance limits of interactions controllers. J Dyn Syst 114:563–570

    Google Scholar 

  79. Nichols TR, Houk JC (1976) Improvement in linearity and regulation of stiffness that results from actions of stretch reflex. J Neurophysiol 39:119–142

    CAS  PubMed  Google Scholar 

  80. Owens P, Ouellette EA (2004) Elbow disarticulation and transhumeral amputation: surgical management. In: Smith DG, Michael JW, Bowker JH (eds) Atlas of amputations and limb deficiencies, 3rd edn. American Academy of Orthopaedic Surgeons, Rosemont, pp 239–241

    Google Scholar 

  81. Palmer E, Ashby P (1992) Evidence that a long latency stretch reflex in humans is transcortical. J Physiol Lond 449:429–440

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Paluska D, Herr H (2006) The effect of series elasticity on actuator power and work output: implications for robotic and prosthetic joint design. Robot Auton Syst 54:667–673

    Google Scholar 

  83. Perreault E, Kirsch R, Crago P (2004) Multijoint dynamics and postural stability of the human arm. Exp Brain Res 157:507–517. doi:10.1007/s00221-004-1864-7

    PubMed  Google Scholar 

  84. Perreault EJ, Crago PE, Kirsch RF (2000) Estimation of intrinsic and reflex contributions to muscle dynamics: a modeling study. IEEE Trans Biomed Eng 47:1413–1421

    CAS  PubMed  Google Scholar 

  85. Perreault EJ, Kirsch RF, Crago PE (2002) Voluntary control of static endpoint stiffness during force regulation tasks. J Neurophysiol 87:2808–2816. doi:10.1152/jn.00590.2001

    PubMed  Google Scholar 

  86. Petersen N, Christensen LO, Morita H et al (1998) Evidence that a transcortical pathway contributes to stretch reflexes in the tibialis anterior muscle in man. J Physiol Lond 512(Pt 1):267–276

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Pfeifer S, Vallery H, Hardegger M et al (2012) Model-based estimation of knee stiffness. IEEE Trans Biomed Eng 59:2604–2612. doi:10.1109/TBME.2012.2207895

    PubMed Central  PubMed  Google Scholar 

  88. Pratt GA, Williamson MM (1995) Series elastic actuators. IEEE/RSJ International conference on intelligent robots and systems, Pittsburgh, PA, pp 399–406

    Google Scholar 

  89. Pratt GA, Williamson MM, Dillworth P et al (1995) Stiffness isn’t everything. Fourth international symposium on experimental robotics, Stanford, CA, pp 253–262

    Google Scholar 

  90. Pruszynski JA, Kurtzer I, Scott SH (2008) Rapid motor responses are appropriately tuned to the metrics of a visuospatial task. J Neurophysiol 100:224–238. doi:10.1152/jn.90262.2008

    PubMed  Google Scholar 

  91. Puchhammer G (2006) Future actuating technologies for upper-extremity prosthetic devices. In: 10th International conference on new actuators, Bremen, Germany, pp 301–307

    Google Scholar 

  92. Rack PMH, Westbury DR (1974) The short range stiffness of active mammalian muscle and its effect on mechanical properties. J Physiol 240:331–350

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Rancourt D, Hogan N (2009) The biomechanics of force production. Adv Exp Med Biol 629:645–661. doi:10.1007/978-0-387-77064-2_35

    PubMed  Google Scholar 

  94. Roberts TJ, Marsh RL, Weyand PG, Taylor CR (1997) Muscular force in running turkeys: the economy of minimizing work. Science 275:1113–1115

    CAS  PubMed  Google Scholar 

  95. Robinson DW, Pratt JE, Paluska DJ, Pratt GA (1999) Series elastic actuator development for a biomimetic walking robot. IEEE/ASME International conference on advanced intelligent mechanisms, Atlanta, GA, pp 561–568

    Google Scholar 

  96. Rouse EJ, Gregg RD, Hargrove LJ, Sensinger JW (2013) The difference between stiffness and quasi-stiffness in the context of biomechanical modeling. IEEE Trans Biomed Eng 60:562–568. doi:10.1109/TBME.2012.2230261

    PubMed  Google Scholar 

  97. Rouse EJ, Hargrove LJ, Perreault EJ et al (2013) Development of a mechatronic platform and validation of methods for estimating ankle stiffness during the stance phase of walking. J Biomech Eng 135:81009. doi:10.1115/1.4024286

    PubMed  Google Scholar 

  98. Rouse E, Hargrove L, Perreault E, Kuiken T (2014) Estimation of human ankle impedance during the stance phase of walking. IEEE Trans Neural Syst Rehabil Eng. doi:10.1109/TNSRE.2014.2307256

    Google Scholar 

  99. Sapin E, Goujon H, de Almeida F et al (2006) Functional gait analysis of transfemoral amputees using Hydracadence® knee joints compared with other single axis prosthetic knees with hydraulic swing. International symposium of the analysis of 3D human movement, Valenciennes, France

    Google Scholar 

  100. Schonhow T, Kristensen T, Siversten S, Wits E (2005) New technology for the suspension of trans-humeral prostheses – SISA (Subfascial Implant supported attachment). Myoelectric controls symposium, pp 88–92

    Google Scholar 

  101. Schuch CM, Pritham CH (2004) Transfemoral amputation: prosthetic management. In: Smith DG, Michael JW, Bowker JH (eds) Atlas of amputations and limb deficiencies, 3rd edn. American Academy of Orthopaedic Surgeons, Rosemont, pp 541–555

    Google Scholar 

  102. Selen LPJ, Franklin DW, Wolpert DM (2009) Impedance control reduces instability that arises from motor noise. J Neurosci 29:12606–12616. doi:10.1523/JNEUROSCI.2826-09.2009

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Sensinger JW (2010) Selecting motors for robots using biomimetic trajectories: optimum benchmarks, windings, and other considerations. IEEE conference on robotics and automation, Anchorage, AK, pp 4175–4181

    Google Scholar 

  104. Sensinger JW, Burkart LE, Pratt GA, Weir R (2013) Effect of compliance location in series elastic actuators. Robotica 31:1313–1318

    Google Scholar 

  105. Sensinger JW, Weir REF (2008) User-modulated impedance control of a prosthetic elbow in unconstrained, perturbed motion. IEEE Trans Biomed Eng 55:1043–1055. doi:10.1109/Tbme.2007.905385

    PubMed  Google Scholar 

  106. Sensinger JW, Weir RF (2005) Design and analysis of a non-backdrivable series elastic actuator. Rehabilitation Robotics

    Google Scholar 

  107. Sensinger JW, Weir RFF (2008) Modeling and preliminary testing socket-residual limb interface stiffness of above-elbow prostheses. IEEE Trans Neural Syst Rehabil Eng 16:184–190. doi:10.1109/Tnsr.E.2008.918388

    PubMed Central  PubMed  Google Scholar 

  108. Sensinger JW, Weir RFF (2007) Inherently compensating body powered elbow. Vancouver

    Google Scholar 

  109. Sensinger JW, Weir RFF (2006) Improvements to series elastic actuators. IEEE/ASME International conference on mechatronic and embedded systems and applications, Beijing, pp 160–166

    Google Scholar 

  110. Shemmell J, Krutky MA, Perreault EJ (2010) Stretch sensitive reflexes as an adaptive mechanism for maintaining limb stability. Clin Neurophysiol 121:1680–1689. doi:10.1016/j.clinph.2010.02.166

    PubMed Central  PubMed  Google Scholar 

  111. Simon AM, Fey N, Finucane S, et al (2013) Strategies to reduce the configuration time of a powered knee and ankle prosthesis across patients and multiple ambulation modes. IEEE International conference on rehabilitation robotics (ICORR), Seattle

    Google Scholar 

  112. Simpson D (1974) The choice of control system for the multimovement prosthesis: extended physiological proprioception (e.p.p.). In: Herbert P (ed) The control of upper extremity prostheses and orthoses. Thomas Books, Springfield, pp 146–150

    Google Scholar 

  113. Sinkjaer T, Toft E, Andreassen S, Hornemann BC (1988) Muscle stiffness in human ankle dorsiflexors: intrinsic and reflex components. J Neurophysiol 60:1110–1121

    CAS  PubMed  Google Scholar 

  114. Stein RB, Walley M (1983) Functional comparison of upper extremity amputees using myoelectric and conventional prostheses. Arch Phys Med Rehabil 64:243–248

    CAS  PubMed  Google Scholar 

  115. Sulzer J, Peshkin M, Patton J (2008) Pulling your strings: cable moment arm manipulation as a method of joint actuation. IEEE Robot Autom Mag 15:70–78

    PubMed Central  PubMed  Google Scholar 

  116. Sup F, Bohara A, Goldfarb M (2008) Design and control of a powered transfemoral prosthesis. Int J Robot Res 27:263–273

    Google Scholar 

  117. Sup F, Varol HA, Mitchell J et al (2009) Preliminary evaluations of a self-contained anthropomorphic transfemoral prosthesis. IEEE ASME Trans Mechatron 14:667–676. doi:10.1109/TMECH.2009.2032688

    PubMed Central  PubMed  Google Scholar 

  118. Trumbower RD, Krutky MA, Yang B-S, Perreault EJ (2009) Use of self-selected postures to regulate multi-joint stiffness during unconstrained tasks. PLoS One 4:e5411. doi:10.1371/journal.pone.0005411.t001

    PubMed Central  PubMed  Google Scholar 

  119. Van Ham R, Sugar TG, Vanderborght B et al (2009) Compliant actuator designs review of actuators with passive adjustable compliance/controllable stiffness for robotic applications. IEEE Robot Autom Mag 16:81–94. doi:10.1109/Mra.2009.933629

    Google Scholar 

  120. van Steenberghe D, Quirynen M, Svensson B, Branemark PI (2003) Clinical examples of what can be achieved with osseointegration in anatomically severely compromised patients. Periodontology 2000 33:90–104

    PubMed  Google Scholar 

  121. Vanderborght B, Van Ham R, Lefeber D et al (2009) Comparison of mechanical design and energy consumption of adaptable, passive-compliant actuators. Int J Robot Res 28:90–103. doi:10.1177/0278364908095333

    Google Scholar 

  122. Varol HA, Sup F, Goldfarb M (2010) Multiclass real-time intent recognition of a powered lower limb prosthesis. IEEE Trans Biomed Eng 57:542–551. doi:10.1109/TBME.2009.2034734

    PubMed Central  PubMed  Google Scholar 

  123. Veatch BD (2004) A combination VO/VC terminal device with variable mechanical advantage. American Academy of Orthotics and Prosthetics

    Google Scholar 

  124. Veneman JF, Kruidhof R, Hekman EEG et al (2007) Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng 15:379–386

    PubMed  Google Scholar 

  125. Vodovnik L, Rebersek S (1974) Information-content of myo-control signals for orthotic and prosthetic systems. Arch Phys Med Rehabil 55:52–56

    CAS  PubMed  Google Scholar 

  126. Weir RFF, Sensinger JW (2009) Design of artificial arms and hands for prosthetic applications. In: Kutz M (ed) 2nd ed. McGraw-Hill, New York, pp 537–598

    Google Scholar 

  127. Whitney DE (1977) Force feedback control of manipulator fine motions. J Dyn Syst Meas Control 99:91–97

    Google Scholar 

  128. Winter DA (1983) Energy generation and absorption at the ankle and knee during fast, natural, and slow cadences. Clin Orthop Relat Res 197:147–154

    Google Scholar 

  129. Winter DA (1990) Biomechanics and motor control of movement, 2nd edn. Wiley, Toronto

    Google Scholar 

  130. Zajac FE, Neptune RR, Kautz SA (2002) Biomechanics and muscle coordination of human walking. Part I: introduction to concepts, power transfer, dynamics and simulations. Gait Posture 16:215–232

    PubMed  Google Scholar 

  131. Zecca M, Micera S, Carrozza MC, Dario P (2002) Control of multifunctional prosthetic hands by processing the electromyographic signal. Crit Rev Biomed Eng 40:459–485

    Google Scholar 

  132. Zheng Y, Mak AFT, Leung AKL (2001) State-of-the-art methods for geometric and biomechanical assessments of residual limbs: a review. J Rehabil Res Dev 38:487–504

    CAS  PubMed  Google Scholar 

  133. Zinn M, Khatib O, Roth B, Salisbury JK (2004) Playing it Safe. IEEE Robot Autom Mag 11:12–21

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Perreault .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Perreault, E., Hargrove, L., Ludvig, D., Lee, H., Sensinger, J. (2014). Considering Limb Impedance in the Design and Control of Prosthetic Devices. In: Artemiadis, P. (eds) Neuro-Robotics. Trends in Augmentation of Human Performance, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8932-5_3

Download citation

Publish with us

Policies and ethics