Skip to main content

Robotic Systems for Gait Rehabilitation

  • Chapter
  • First Online:
Neuro-Robotics

Abstract

Human walking is impaired by various neurological diseases such as stroke. Gait restoration is a major goal in neurological rehabilitation following stroke. Robotic devices have been developed to assist locomotor training improving gait function and thus a stroke survivor’s independence. This chapter presents robotic systems that have been developed specifically for gait rehabilitation providing pelvic, hip and/or knee motion assistance. Robotic systems allow clinicians to increase the duration, intensity and specificity of treatment compared to traditional physical therapy. These factors could result in a faster and increased level of recovery of functional capability thus leading to an improvement of patient’s level of independence and quality of life. In addition, robotic systems could be used to reduce the number of physical therapists involved in the treatment of each patient. In fact, there is great interest in robot-assisted rehabilitation for partially automating such therapy, to enable just one physical therapist to administer gait training instead of at least two. A major limitation in the use of robotic systems for gait rehabilitation is their high cost. Currently, commercially available robotic solutions for automation of gait rehabilitation physical therapy cost between $60,000 and $300,000 and thus very few clinical facilities can afford them. In addition, low cost robotic devices for gait rehabilitation could be used by post-stroke survivors at home, in order to accelerate and intensify the rehabilitation process and improve the therapeutic outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Inman VT, Ralston HJ, Frank T (1981) Human walking. Williams & Wilkins, Baltimore

    Google Scholar 

  2. Perry J, Burnfield JM (2010) Gait analysis: normal and pathological function, 2nd edn. Slack Incorporated, Thorofare, New Jersey

    Google Scholar 

  3. Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, Bravata DM et al (2011) Heart disease and stroke statistics – 2012 update: a report from the American Heart Association. Circulation 125:e2–e220. doi:10.1161/CIR.0b013e31823ac046

    PubMed  Google Scholar 

  4. Hesse S (2008) Treadmill training with partial body weight support after stroke: a review. NeuroRehabilitation 23:55–65

    PubMed  Google Scholar 

  5. Banala SK, Agrawal SK, Scholz JP (2007) Active Leg Exoskeleton (ALEX) for gait rehabilitation of motor-impaired patients. In: Proceedings of the IEEE international conference on rehabilitation robotics, 10th edn, Noordwijk, pp 401–407. doi:10.1109/ICORR.2007.4428456

  6. Belda-Lois J-M, Horno SM, Bermejo-Bosch I, Moreno JC, Pons JL, Farina D, Iosa M et al (2011) Rehabilitation of gait after stroke: a review towards a top-down approach. J Neuroeng Rehabil 8:66. doi:10.1186/1743-0003-8-66

    Article  PubMed Central  PubMed  Google Scholar 

  7. Aliverti A, Frigo C, Andreoni G, Baroni G, Bonarini A, Cerveri P, Crivellini M et al (2011) Functional evaluation and rehabilitation engineering. IEEE Pulse 2:24–34. doi:10.1109/MPUL.2011.941520

    Article  PubMed  Google Scholar 

  8. Swinnen E, Duerinck S, Baeyens JP, Meeusen R, Kerckhofs E (2010) Effectiveness of robot-assisted gait training in persons with spinal cord injury: a systematic review. J Rehabil Med 42:520–526. doi:10.2340/16501977-0538

    Article  PubMed  Google Scholar 

  9. Tefertiller C, Pharo B, Evans N, Winchester P (2011) Efficacy of rehabilitation robotics for walking training in neurological disorders: a review. J Rehabil Res Dev 48:387–416

    Article  PubMed  Google Scholar 

  10. Agrawal SK, Banala SK, Fattah A, Sangwan V, Krishnamoorthy V, Scholz JP, Hsu W-L (2007) Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton. IEEE Trans Neural Syst Rehabil Eng 15:410–420. doi:10.1109/TNSRE.2007.903930

    Article  PubMed  Google Scholar 

  11. Beyl P, Van Damme M, Van Ham R, Versluys R, Vanderborght B, Lefeber DP (2008) An exoskeleton for gait rehabilitation: prototype design and control principle. In: Proceedings of the IEEE international conference on robotics and automation, Pasadena, pp 2037–2042. doi:10.1109/ROBOT.2008.4543506

  12. Colombo G, Joerg M, Schreier R, Dietz V (2000) Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev 37:693–700

    CAS  PubMed  Google Scholar 

  13. Colombo G, Wirz M, Dietz V (2001) Driven gait orthosis for improvement of locomotor training in paraplegic patients. Spinal Cord 39:252–255

    Article  CAS  PubMed  Google Scholar 

  14. Ichinose WE, Reinkensmeyer DJ, Aoyagi D, Lin JT, Ngai K, Edgerton VR, Harkem SJ, Bobrow JE (2003) A robotic device for measuring and controlling pelvic motion during locomotor rehabilitation. In: Conference proceedings of the IEEE Engineering in Medicine and Biology Society, 25th edn, vol 2, Cancun, pp 1690–1693. doi:10.1109/IEMBS.2003.1279715

  15. Unluhisarcikli O (2012) Human-robot interaction control of neurorehabilitation robots. Ph.D. thesis, Northeastern University

    Google Scholar 

  16. Reinkensmeyer DJ, Wynne JH, Harkema SJ (2002) A robotic tool for studying locomotor adaptation and rehabilitation. In: Proceedings of the annual conference and annual fall meeting of the Biomedical Engineering Society, 24th edn, vol 3, Houston, pp 2353–2354. doi:10.1109/IEMBS.2002.1053318

  17. Schmidt H, Hesse S, Bernhardt R, Kruger J (2005) HapticWalker – a novel haptic foot device. ACM Trans Appl Percept 2:166–180. doi:10.1145/1060581.1060589

    Article  Google Scholar 

  18. Hussein S, Schmidt H, Volkmar M, Werner C, Helmich I, Piorko F, Krüger J et al (2008) Muscle coordination in healthy subjects during floor walking and stair climbing in robot assisted gait training. In: Conference proceedings of the IEEE Engineering in Medicine and Biology Society, 30th edn, Vancouver, pp 1961–1964. doi:10.1109/IEMBS.2008.4649572

  19. Rehab Technology AG (2012) Rehab technology: for a better life (G-EO system). http://www.rehatechnology.com/. Accessed 20 Apr 2013

  20. Tomelleri C, Waldner A, Werner C, Hesse S (2011) Adaptive locomotor training on an end-effector gait robot: evaluation of the ground reaction forces in different training conditions. In: Proceedings of the IEEE international conference on rehabilitation robotics, Zurich, pp 5975–5492. doi:10.1109/ICORR.2011.5975492

  21. Hesse S, Waldner A, Tomelleri C (2010) Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients. J Neuroeng Rehabil 7:30. doi:10.1186/1743-0003-7-30

    Article  PubMed Central  PubMed  Google Scholar 

  22. Aoyagi D, Ichinose WE, Harkema SJ, Reinkensmeyer DJ, Bobrow JE (2007) A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury. IEEE Trans Neural Syst Rehabil Eng 15:387–400

    Article  PubMed  Google Scholar 

  23. Aoyagi D, Ichinose WE, Harkema SJ, Reinkensmeyer DJ, Bobrow JE (2005) An assistive robotic device that can synchronize to the pelvic motion during human gait training. In: Proceedings of the IEEE international conference rehabilitation robotics, 9th edn, Chicago, pp 565–568. doi:10.1109/ICORR.2005.1502026

  24. Wang P, Low KH, Lim PH, Tow A (2011) Effects of ground contact for overground walking on a robotic gait trainer. In: Proceedings of the IEEE international conference on robotics and biomimetics, Phuket Island, pp 895–900. doi:10.1109/ROBIO.2011.6181401

  25. Wang P, Low KH, Tow A (2011) Synchronized walking coordination for impact-less footpad contact of an overground gait rehabilitation system: NaTUre-gaits. In: Proceedings of the IEEE international conference on rehabilitation robotics, Zurich, pp 1–6. doi:10.1109/ICORR.2011.5975353

  26. Luu TP, Lim H-BB, Qu X, Low KH (2011) Pelvic motion assistance of NaTUre-gaits with adaptive body weight support. In: Proceedings of the Asian control conference, 8th edn, Kaohsiung, pp 950–955

    Google Scholar 

  27. Lim H-BB, Luu TP, Hoon KH, Qu X, Tow A, Low KH (2011) Study of body weight shifting on robotic assisted gait rehabilitation with NaTUre-gaits. In: Proceedings of the IEEE/RSJ international conference on intelligent robotics and systems (IROS), San Francisco, pp 4923–4928. doi:10.1109/IROS.2011.6094849

  28. Yoon J, Novandy B, Yoon C-H, Park K-J (2010) A 6-DOF gait rehabilitation robot with upper and lower limb connections that allows walking velocity updates on various terrains. IEEE ASME Trans Mechatron 15:201–215. doi:10.1109/TMECH.2010.2040834

    Article  Google Scholar 

  29. Artemiadis PK, Krebs HI (2010) On the control of the MIT-Skywalker. In: Conference proceedings of the IEEE Engineering in Medicine and Biology Society, 32nd edn, Buenos Aires, pp 1287–1291. doi:10.1109/IEMBS.2010.5626407

  30. Artemiadis PK, Krebs HI (2011) On the potential field-based control of the MIT-Skywalker. In: Proceedings of the IEEE international conference on robotics and automation, Shanghai, pp 1427–1432. doi:10.1109/ICRA.2011.5980063

  31. Wu M, Hornby TG, Landry JM, Roth H, Schmit BD (2011) A cable-driven locomotor training system for restoration of gait in human SCI. Gait Posture 33:256–260. doi:10.1016/j.gaitpost.2010.11.016

    Article  PubMed  Google Scholar 

  32. Wu M, Landry JM, Yen SC, Schmit BD, Hornby TG, Rafferty M (2011) A novel cable-driven robotic training improves locomotor function in individuals post-stroke. In: Conference proceedings of the IEEE Engineering in Medicine and Biology Society, 33rd edn, Boston, pp 8539–8542. doi:10.1109/IEMBS.2011.6092107

  33. Surdilovic D, Zhang J, Bernhardt R (2007) STRING-MAN: wire-robot technology for safe, flexible and human-friendly gait rehabilitation. In: Proceedings of the IEEE international conference on rehabilitation robotics, 10th edn, Noordwijk, pp 446–453. doi:10.1109/ICORR.2007.4428463

  34. Peshkin M, Brown DA, Santos-Munne JJ, Makhlin A, Lewis E, Colgate JE, Patton J et al (2005) KineAssist: a robotic overground gait and balance training device. In: Proceedings of the IEEE international conference on rehabilitation robotics, 9th edn, Chicago, pp 241–246. doi: 10.1109/ICORR.2005.1501094

  35. Seo K-H, Lee J-J (2009) The development of two mobile gait rehabilitation systems. IEEE Trans Neural Syst Rehabil Eng 17:156–166

    Article  PubMed  Google Scholar 

  36. Colombo G, Jorg M, Dietz V (2000) Driven gait orthosis to do locomotor training of paraplegic patients. In: Conference proceedings of the IEEE engineering in Medicine and Biology Society, 22nd edn, vol 4, Chicago, pp 3159–3163. doi:10.1109/IEMBS.2000.901556

  37. Hocoma AG (2007) Lokomat® – enhanced functional locomotion therapy with augmented performance feedback [cited 2012 August 6th]. http://www.hocoma.com/en/products/lokomat/. Accessed 8 Mar 2013

  38. Veneman JF (2007) Design and evaluation of the gait rehabilitation robot LOPES. Ph.D. thesis, University of Twente

    Google Scholar 

  39. Veneman JF, Kruidhof R, Hekman EEG, Ekkelenkamp R, Van Asseldonk EHF, van der Kooij H (2007) Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng 15:379–386. doi:10.1109/TNSRE.2007.903919

    Article  PubMed  Google Scholar 

  40. Ekkelenkamp R, Veneman JF, van der Kooij H (2007) LOPES: a lower extremity powered exoskeleton. In: Proceedings of the IEEE international conference on robotics and Automation, Roma, pp 3132–3133. doi:10.1109/ROBOT.2007.363952

  41. Banala SK, Kim SH, Agrawal SK, Scholz JP (2009) Robot assisted gait training with Active Leg Exoskeleton (ALEX). IEEE Trans Neural Syst Rehabil Eng 17:2–8. doi:10.1109/TNSRE.2008.2008280

    Article  PubMed  Google Scholar 

  42. Winfree KN, Stegall P, Agrawal SK (2011) Design of a minimally constraining, passively supported gait training exoskeleton: ALEX II. In: Proceedings of the IEEE international conference on rehabilitation robotics, Zurich, pp 1–6. doi:10.1109/ICORR.2011.5975499

  43. Banala SK, Agrawal SK, Kim SH, Scholz JP (2010) Novel gait adaptation and neuro-motor training results using an Active Leg Exoskeleton (ALEX). IEEE ASME Trans Mechatron 15(2):216–225

    Article  Google Scholar 

  44. Kim SH, Banala SK, Agrawal SK, Krishnamoorthy V, Scholz JP (2010) Robot-assisted modification of gait in healthy individuals. Exp Brain Res 202:809–824

    Article  PubMed  Google Scholar 

  45. Stegall P, Winfre K, Agrawal SK (2012) Degrees-of-freedom of a robotic exoskeleton and the human adaptation to templates of new gait. In: Proceedings of the IEEE international conference on robotics and automation, Saint Paul, MN

    Google Scholar 

  46. Beyl P, Van Damme M, Van Ham R, Lefeber D (2008) Design and control concepts of an exoskeleton for gait rehabilitation. In: Proceedings of the IEEE RAS EMBS international conference on biomedical robotics biomechatronics, 2nd edn, Scottsdale, pp 103–108. doi:10.1109/BIOROB.2008.4762874

  47. Unluhisarcikli O, Pietrusinski M, Weinberg B, Bonato P, Mavroidis C (2011) Design and control of a robotic lower extremity exoskeleton for gait rehabilitation. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS), San Francisco, pp 4893–4898. doi:10.1109/IROS.2011.6094973

  48. Pietrusinski M, Cajigas I, Goldsmith M, Bonato P, Mavroidis C (2010) Robotically generated force fields for stroke patient pelvic obliquity gait rehabilitation. In: Proceedings of the IEEE international conference on robotics and automation, Anchorage, pp 569–575. doi:10.1109/ROBOT.2010.5509872

  49. Pietrusinski M, Cajigas I, Severini G, Bonato P, Mavroidis C (2013) Robotic gait rehabilitation trainer. IEEE ASME Trans Mechatron 19(2):490–499

    Article  Google Scholar 

  50. Lim H-BB, Hoon KH, Low KH, Soh YC, Tow A (2008) Pelvic control and over-ground walking methodology for impaired gait recovery. In: Proceedings of the IEEE international conference on robotics and biomimetics, Bangkok, pp 282–287. doi:10.1109/ROBIO.2009.4913017

  51. Bae J, Kong K-C, Byl N, Tomizuka M (2009) A mobile gait monitoring system for gait analysis. In: Proceedings of the IEEE international conference on rehabilitation robotics, 11th edn, Kyoto, pp 73–79. doi:10.1109/ICORR.2009.5209621

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aline Marian Callegaro or Constantinos Mavroidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Callegaro, A.M., Unluhisarcikli, O., Pietrusinski, M., Mavroidis, C. (2014). Robotic Systems for Gait Rehabilitation. In: Artemiadis, P. (eds) Neuro-Robotics. Trends in Augmentation of Human Performance, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8932-5_10

Download citation

Publish with us

Policies and ethics