Skip to main content

Perceptual Measurement

  • Chapter
  • First Online:
Measurement and Probability

Part of the book series: Springer Series in Measurement Science and Technology ((SSMST))

  • 1861 Accesses

Abstract

Perceptual measurement, that is, measurement of quantities related to human perception and interpretation, has been historically a controversial issue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In reality, this formula holds true only for sounds having \(L_\mathrm{p}\ge 40\) dB. Yet a proper expression can be found also for sounds that do not satisfy this condition, and the scale can thus be extended over the entire audibility range.

  2. 2.

    Calibration will be discussed in some detail in Chap. 10.

  3. 3.

    In the following, we will use some results from an experimental activity carried out in our laboratory, whose results have been published in Refs. [22, 23] mainly. Interested readers may found a full account of that experiment in those references.

  4. 4.

    See footnote 3.

  5. 5.

    As we mentioned, the way this re-scaling is actually done constitutes a major difference between the two models.

  6. 6.

    See again footnote 3.

References

  1. Ferguson, A., Myers, C.S., Bartlett, R.J.: Quantitative estimates of sensory events. Final Rep. Br. Assoc. Adv. Sci. 2, 331–349 (1940)

    Google Scholar 

  2. Rossi, G.B., Berglund, B.: Measurement of quantities involving human perception and interpretation. Measurement 44, 815–822 (2011)

    Article  Google Scholar 

  3. Lord, F.M., Novick, M.R.: Statistical Theory of Mental Test Scores. Addison Wesley, Reading (1968)

    Google Scholar 

  4. Baird, J.C., Noma, E.: Fundamentals of Scaling and Psychophysics. Wiley, New York (1978)

    Google Scholar 

  5. Narens, L., Luce, R.D.: Measurement: the theory of numerical assignment. Psychol. Bull. 99, 166–180 (1986)

    Article  Google Scholar 

  6. BIPM: Principles governing photometry. Imprimerie Durand, Luisant (1983)

    Google Scholar 

  7. Nelson, R.A., Ruby, L.: Physiological units in the SI. Metrologia 30, 55–60 (1993)

    Article  ADS  Google Scholar 

  8. Pointer, M.R.: New directions—soft metrology requirements for support from mathematics statistics and software. NPL report CMSC 20/03 (2003)

    Google Scholar 

  9. European Commission: Measuring the impossible. EUR 22424, European Communities ISBN 92-79-03854-0 (2007)

    Google Scholar 

  10. Pendrill, L.R., et al.: Measurement with persons: a European network. Measure 5, 4254 (2010)

    Google Scholar 

  11. Berglund, B., Rossi, G.B., Townsend, J., Pendrill, L. (eds.): Measurement with Persons. Taylor and Francis, New York (2012)

    Google Scholar 

  12. Galanter, E., et al.: Measuring the Impossible—Report of the MINET High-Level Expert Group. EU NEST, Bruxelles (2010)

    Google Scholar 

  13. Pierce, A.D.: Acoustics—An Introduction to Its Physical Principles and Application. Acoustical Society of America, USA (1989)

    Google Scholar 

  14. Yang, S.J., Ellison, A.J.: Machinery Noise Measurement. Clarendon Press, Oxford (1985)

    Google Scholar 

  15. Zwicker, E., Fastl, H.: Psycho-Acoustics. Springer, New York (1999)

    Google Scholar 

  16. ISO: ISO standard 226: acoustics—normal equal loudness levels (1987)

    Google Scholar 

  17. Schlittenlacher, J., et al.: Loudness of pink noise and stationary technical sounds. Paper presented at Inter-Noise, Osaka, Japan. 4–7 Sept 2011

    Google Scholar 

  18. Berglund, B.: Quality assurance in environmental psychophysics. In: Bolanowski, S.J., Gescheider, G.A. (eds.) Ratio Scaling of Psychological Magnitudes. Erlbaum, Hillsdale (1991)

    Google Scholar 

  19. Stevens, S.S.: Measurement, psychophysics and utility. In: Churchman, C.W., Ratoosh, P. (eds.) Basic Concepts of Measurements, pp. 1–49. Cambridge University Press, Cambridge (1959)

    Google Scholar 

  20. Berglund, B.: Measurement in psychology. In: Berglund, B., Rossi, G.B., Townsend, J., Pendrill, L. (eds.) Measurement with Persons, pp. 27–50. Taylor and Francis, New York (2012)

    Google Scholar 

  21. Forbes, A.B.: Parameter estimation based on the least-squares method. In: Pavese, F., Forbes, A. (eds.) Data Modeling for Metrology and Testing in Measurement Science, pp. 147–176. Birkhauser-Springer, Boston (2009)

    Google Scholar 

  22. Crenna, F., Rossi, G.B., Bovio, L.: Loudness measurement by robust magnitude estimation. Paper presented at the 14th joint int. IMEKO TC1+TC7+TC13 symposium, Jena. 31 Aug 2 Sept 2011

    Google Scholar 

  23. Rossi, G.B., Crenna, F.: On ratio scales. Measurement 46, 29–36 (2013). doi:10.1016/j.measurement.2013.04.042

    Google Scholar 

  24. Miyamoto, J.M.: An axiomatization of the ratio difference representation. J. Math. Psychol. 27, 439–455 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  25. Moore, B.C.J.: Psychology of Hearing. Academic Press/Elsevier, San Diego (2003)

    Google Scholar 

  26. DIN: DIN 45631: procedure for calculating loudness level and loudness (1991)

    Google Scholar 

  27. ANSI: ANSI S3.4-2007: procedure for the computation of loudness of steady sounds (2007)

    Google Scholar 

  28. DIN: DIN 45631/A1: calculation of loudness level and loudness from the sound spectrum—Zwicker method—amendment 1: calculation of the loudness of time-variant sound (2008)

    Google Scholar 

  29. Berglund, B., Harju, E.: Master scaling of perceived intensity of touch, cold and warmth. Eur. J. Pain 7, 323–334 (2003)

    Article  Google Scholar 

  30. Crenna, F., Belotti, V., Rossi, G.B.: Experimental set-up for the measurement of the perceived intensity of vibrations. Paper presented at the XX IMEKO world congress metrology for green growth, Busan, Republic of Korea. 9–14 Sept 2012

    Google Scholar 

  31. Townsend, J.T., Burns, D., Pei, L.: The prospects for measurement in infinite-dimensional psychological spaces. In: Berglund, B., Rossi, G.B., Townsend, J., Pendrill, L. (eds.) Measurement with Persons, pp. 143–174. Taylor and Francis, New York (2012)

    Google Scholar 

  32. Crenna, F., Rossi, G.B., Bovio, L.: Measurement of the perceived similarity in face recognition. Paper presented at the XX IMEKO world congress metrology for green growth, Busan, Republic of Korea. 9–14 Sept 2012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Battista Rossi .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rossi, G.B. (2014). Perceptual Measurement. In: Measurement and Probability. Springer Series in Measurement Science and Technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8825-0_8

Download citation

Publish with us

Policies and ethics