Skip to main content

Investigation of Compound-Specific Organic-Inorganic Phosphorus Transformation Using Stable Isotope Ratios in Phosphate

  • Chapter
  • First Online:
Applied Manure and Nutrient Chemistry for Sustainable Agriculture and Environment

Abstract

Phosphorus (P) is one of the most important nutrients for all life forms irrespective of physiological uptake mechanism or metabolic pathway. Soils and sediments contain a variety of organic P compounds that may undergo active transformation into inorganic P and vice versa. Phosphate oxygen isotope ratios have increasingly been applied to better understand the physico-chemical and biological pathways of P cycling and its fate in agricultural and nonagricultural soils. For example, the fractionation factors during hydrolysis of structurally-similar organic P compounds studied thus far are often distinct. Therefore compound-specific isotopic composition could be a powerful tool for differentiating transformation of different P compounds, tracking their origin and fate, and ultimately to develop an integrated and quantitative understanding of P cycling in both extant and fossil ecosystems. This chapter reviews biochemical reaction mechanisms and the current state of knowledge on compound-specific isotopic effects during hydrolysis of organic P compounds. While this research is still in its infancy, a new paradigm has emerged and it is hoped that the future expansion of this research will allow development of a holistic approach to integrate transformation of organic and inorganic P over time and space in different ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aber JD, Nadelhoffer KJ, Steudler P, Melillo JM (1989) Nitrogen saturation in northern forest ecosystems. BioScience 39:378–386

    Google Scholar 

  • Admiraal SJ, Herschlag D (1999) Catalysis of phosphoryl transfer from ATP by amine nucleophiles. J Am Chem Soc 121:5837–5845

    CAS  Google Scholar 

  • Ammerman JW, Azam F (1985) Bacterial 5′-nucleotidase in aquatic ecosystems: a novel mechanism of phosphorus regeneration. Science 227:1338–1340

    PubMed  CAS  Google Scholar 

  • Angert A, Weiner T, Mazeh S, Sternberg M (2012) Soil phosphate stable oxygen isotopes across rainfall and bedrock gradients. Environ Sci Technol 46:2156–2162

    PubMed  CAS  Google Scholar 

  • Ator SW, Brakebill JW, Blomquist JD (2011) Sources, fate, and transport of nitrogen and phosphorus in the Chesapeake Bay watershed: an empirical model. U.S. Geological Survey Scientific Investigations Report 2011–5167, 27pp

    Google Scholar 

  • Baykov AA, Shestakov AS (1992) Two pathways of pyrophosphate hydrolysis and synthesis by yeast inorganic pyrophosphatase. Eur J Biochem 206:463–470

    Google Scholar 

  • Baykov AA, Shestakov AS, Kasho VN, Vener AV, Ivanov AH (1990) Kinetics and thermodynamics of catalysis by the inorganic pyrophosphatase of Escherichia coli in both directions. Eur J Biochem 194:879–887

    Google Scholar 

  • Baykov AA, Kasho VN, Bakuleva NP, Rea PA (1994) Oxygen exchange reactions catalyzed by vacuolar H+-translocating payrophosphatase. FEBS Lett 350:323−327

    Google Scholar 

  • Benitez-Nelson CR (2000) The biogeochemical cycling of phosphorus in marine systems. Earth Sci Rev 51:109–135

    CAS  Google Scholar 

  • Blake RE, O’Neil JR, Garcia GA (1997) Oxygen isotope systematics of microbially mediated reactions of phosphate: I. Degradation of organophosphorus compounds. Geochim Cosmochim Acta 61:4411–4422

    CAS  Google Scholar 

  • Blake RE, O’Neil JR, Garcia GA (1998a) Enzyme-catalyzed oxygen isotope exchange between inorganic phosphate and water: reaction rates and temperature dependence at 5.7–30 °C. Miner Mag 62:163–164

    Google Scholar 

  • Blake RE, O’Neil JR, Garcia GA (1998b) Effects of microbial activity on the δ18Op of dissolved inorganic phosphate and textural features of synthetic apatites. Am Mineral 83:1516–1531

    CAS  Google Scholar 

  • Blake RE, Alt JC, Martini AM (2001) Oxygen isotope ratios of PO4: an inorganic indicator of enzymatic activity and P metabolism and a new biomarker in the search for life. Proc Nat Acad Sci USA 98:2148–2153

    Google Scholar 

  • Blake RE, O’Neil JR, Surkov AV (2005) Biogeochemical cycling of phosphorus: insights from oxygen isotope effects of phosphoenzymes. Am J Sci 305:596–620

    CAS  Google Scholar 

  • Blake RE, Chang SJ, Lepland A (2010) Phosphate oxygen isotopic evidence for a temperate and biologically active Archaean ocean. Nature 464:1029–1032

    PubMed  CAS  Google Scholar 

  • Böhlke JK, Denver JM (1995) Combined use of groundwater dating, chemical, and isotopic analyses to resolve the history and fate of nitrate contamination in two agricultural watersheds, Atlantic coastal plain, Maryland. Water Resour Res 31:2319–2339

    Google Scholar 

  • Bourne N, Williams A (1984) Evidence for a single transition state in the transfer of the phosphoryl group (-PO3 2−) transfer to pyridines from isoquinoline-N-phosphonate. J Am Chem Soc 105:3357–3358

    Google Scholar 

  • Braun AM, Frimmel FH, Haigne J (1986) Singlet oxygen analysis in irradiated surface waters. Int J Environ Anal Chem 27:137–149

    CAS  Google Scholar 

  • Breslow R (1993) Kinetics and mechanism in RNA cleavage. Proc Natl Acad Sci U S A 90:1208–1211

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bünemann EK, Condron LM (2007) Phosphorus and sulfur cycling in terrestrial ecosystems. In: Marschner P, Rengel Z (eds) Nutrient cycling in terrestrial ecosystems, Soil biology. Springer, Heidelberg

    Google Scholar 

  • Bunton CA, Llewellyn DR, Oldham KG, Vernon CA (1958) The reactions of organic phosphates: the hydrolysis of methyl dihydrogen phosphate. J Chem Soc 3574–3587

    Google Scholar 

  • Cade-Menun BJ, Liu CW, Nunlist R, McColl JG (2002) Soil and litter phosphorus-31 nuclear magnetic resonance spectroscopy: extractants, metals, and phosphorus relaxation times. J Environ Qual 31:457–465

    PubMed  CAS  Google Scholar 

  • Carpenter SR, Caraco NF, Correl DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–568

    Google Scholar 

  • Carreira JA, Vinegla B, Blanes MC, Garcia-Ruiz R (2010) Stable isotopes and changing paradigms on soil nitrogen and carbon biogeochemistry. Ecosistemas 29:14–23

    Google Scholar 

  • Cassano AG, Anderson VE, Harris ME (2004) Understanding the transition states of phosphodiester bond cleavage: insights from heavy atom isotope effects. Biopolymers 73:110–129

    Google Scholar 

  • Chiba H, Kusakabe M, Hirano SI, Matsuo S, Somiya S (1981) Oxygen isotope fractionation factors between anhydrite and water from 100 oC to 550 oC. Earth Planet Sci Lett 53:55–62

    CAS  Google Scholar 

  • Cohn M (1953) A study of oxidative phosphorylation with 18O-labeled inorganic phosphate: J Biol Chem 201:735–750

    Google Scholar 

  • Colman AS, Blake RE, Karl DM, Fogel ML, Turekian KK (2005) Marine phosphate oxygen isotopes and organic matter remineralization in the oceans. Proc Natl Acad Sci U S A 102:13023–13028

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cotner JB, Wetzel RG (1992) Uptake of dissolved inorganic and organic phosphorus compounds by phytoplankton and bacterioplankton. Limnol Oceanogr 37:232–243

    CAS  Google Scholar 

  • Cox C (2004) Herbicide factsheet-glyphosate. J Pest Reform 24:10–15

    Google Scholar 

  • Davidson EA, Hart SC, Firestone MK (1992) Internal cycling of nitrate in soils of a mature coniferous forest. Ecology 73:1148–1156

    Google Scholar 

  • Dyhrman ST, Ruttenberg KC (2006) Presence and regulation of alkaline phosphatase activity in eukaryotic phytoplankton from the coastal ocean: implications for dissolved organic phosphorus re-mineralization. Limnol Oceanogr 51:1381–1390

    CAS  Google Scholar 

  • Dyhrman ST, Benitez-Nelson CR, Orchard ED, Haley ST, Pellechia PJ (2009) A microbial source of phosphonates in oligotrophic marine systems. Nat Geosci 2:696–699

    CAS  Google Scholar 

  • Dzombak DA (2011) Nutrient control in large-scale US watersheds: the Chesapeake Bay and Northern Gulf of Mexico. Bridge Nat Acad Eng 41:13–22

    Google Scholar 

  • Ehrlich HL (1996) Geomicrobiology, 3rd edn. Deckker, New York

    Google Scholar 

  • Elsbury KE, Paytan A, Ostrom NE, Kendall C, Young MB, McLaughlin K, Rollog ME, Watson S (2009) Using oxygen isotopes of phosphate to trace phosphorus sources and cycling in Lake Erie. Environ Sci Technol 43:3108–3114

    PubMed  CAS  Google Scholar 

  • Erickson BE (2011) Cleaning the Chesapeake Bay. Chem Eng News 89:10–14

    Google Scholar 

  • Frossard E, Brossard M, Hedley MJ, Metherell A (1995) Reactions controlling the cycling of P in soils. In: Tiessen H (ed) Phosphorus cycling in terrestrial and aquatic ecosystems: a global perspective. SCOPE/Wiley, New York

    Google Scholar 

  • Gerratana B, Sowa GA, Cleland WW (2000) Characterization of the transition state structures and mechanisms for the isomerization and cleavage reactions of 3′m-nitrobenzyl phosphate. J Am Chem Soc 122:12615–12621

    CAS  Google Scholar 

  • Goldhammer T, Brunner B, Bernasconi SM, Ferdelman T, Zabel M (2011) Phosphate oxygen isotopes: insights into sedimentary phosphorus cycling from the Benguela upwelling system. Geochim Cosmochim Acta 75:3741–3756

    CAS  Google Scholar 

  • Green M, Taube H (1963) Isotopic fractionation in the OH–H2O exchange reaction. J Phys Chem 67:1565–1566

    Google Scholar 

  • Gross A, Nishri A, Angert A (2013) Use of phosphate oxygen isotopes for identifying atmospheric-P sources: a case study at Lake Kinneret. Environ Sci Technol 47:2721–2727

    PubMed  CAS  Google Scholar 

  • Gruau G, Legeas M, Riou C, Gallacier E, Martineau F, Hénina O (2005) The oxygen isotopic composition of dissolved anthropogenic phosphates: a new tool for eutrophication research? Water Res 39:232–238

    PubMed  CAS  Google Scholar 

  • Hart SC, Stark JM, Davidson EA, Firestone MK (1994) Nitrogen mineralization, immobilization, and nitrification. In: Weaver RW, Angle JS, Bottomley PJ, Bezdicek DF, Smith MS, Tabatabai MA, Wollun AG (eds) Method of soil analysis, Part 2. Microbiological and biochemical properties, Soil Science Society of America book series. Soil Science Society of America, Wisconsin, pp 985–1018

    Google Scholar 

  • Harway GW, Keister DL (1981) Energy-linked reactions in photosynthetic bacteria: Pi ⇋ HOH oxygen exchange catalyzed by the membrane-bound inorganic pyrophosphatase of Rhodospirillum rubrum. Arch Biochem Biophys 208:426−430

    Google Scholar 

  • Heikinheimo P, Lehtonen J, Baykov A, Lathi R, Cooperman BS, Goldman A (1996) The structural basis for pyrophosphatase catalysis. Structure 4:1491−1508

    Google Scholar 

  • Hengge AC (2002) Isotope effects in the study of phosphoryl and sulfuryl transfer reactions. Acc Chem Res 35:105–112

    PubMed  CAS  Google Scholar 

  • Hengge AC, Tobin AE, Cleland WW (1995) Studies of transition-state structures in phosphoryl transfer reactions of phosphodiesters of p-nitrophenol. J Am Chem Soc 214:5919–5926

    Google Scholar 

  • Herschlag D, Jencks WP (1989) Evidence that metaphosphate monoanion is not an intermediate in solvolysis reactions in aqueous solution. J Am Chem Soc 111:7579–7586

    CAS  Google Scholar 

  • Hoering TC, Kennedy JW (1957) The exchange of oxygen between sulfuric acid and water. J Am Chem Soc 79:56–60

    CAS  Google Scholar 

  • Hoppe H-G, Ullrich S (1999) Profiles of ectoenzymes in the Indian Ocean: phenomena of phosphatase activity in the mesopelagic zone. Aquat Microb Ecol 19:139–148

    Google Scholar 

  • Jaisi DP (2013) Isotope effects during phosphate transport in packed-bed sediment columns. J Contam Hydrol 154:10–19

    PubMed  CAS  Google Scholar 

  • Jaisi DP, Blake RE (2010) Tracing sources and cycling of phosphorus in Peru Margin sediments using oxygen isotopes in authigenic and detrital phosphates. Geochim Cosmochim Acta 74:3199–3212

    CAS  Google Scholar 

  • Jaisi DP, Blake RE, Kukkadapu RK (2010) Fractionation of oxygen isotopes in phosphate during its interactions with iron oxides. Geochim Cosmochim Acta 74:1309–1319

    CAS  Google Scholar 

  • Jaisi DP, Kukkadapu RK, Stout LM, Varga T, Blake RE (2011) Biotic and abiotic pathways of phosphorus cycling in minerals and sediments: insights from oxygen isotope ratios in phosphate. Environ Sci Technol 45:6254–6261

    PubMed  CAS  Google Scholar 

  • Johansen HS, Middleboe V, Larsen S (1991) Delabeling of 18O enriched phosphate added to soil as a function of biological activities in the soils. In: Proceedings of the stable isotopes in plant nutrition, soil fertility and environmental studies. IAEA, Vienna, pp 553–559

    Google Scholar 

  • Jong F (2006) Marine eutrophication in perspective. Springer, New York

    Google Scholar 

  • Kasho VN, Baykov AA (1989) Two pathways for phosphate-water oxygen by yeast inorganic pyrophosphatase. Biochem Biophys Res Commun 161:475−480

    Google Scholar 

  • Kemmitt SJ, Lanyon CV, Waite IS, Wen Q, Addiscott TM, Bird NA, O’Donnell AG, Brookes PC (2008) Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass – a new perspective. Soil Biol Biochem 40:61–73

    CAS  Google Scholar 

  • Kendall C (1998) Tracing nitrogen sources and cycles in catchments. In: Kendall C, McDonnell JJ (eds) Isotope tracers in catchment hydrology. Elsevier Science, Amsterdam, pp 519–576

    Google Scholar 

  • Khan SA, Kirby AJ (1970) Reactivity of phosphate esters. Multiple structure-reactivity correlations for reactions of triesters with nucleophiles. J Chem Soc B 1172–1182

    Google Scholar 

  • Kirby AJ, Jencks WP (1965) Reactivity of nucleophilic reagents toward p-nitrophenyl phosphate dianion. J Am Chem Soc 87:3209–3216

    CAS  Google Scholar 

  • Kirby AJ, Younas M (1970) The reactivity of phosphate esters. Diester hydrolysis. J Chem Soc 3:510–513

    Google Scholar 

  • Knowles JR (1980) Enzyme-catalyzed phosphoryl transfer reactions. Annu Rev Biochem 49:877–919

    PubMed  CAS  Google Scholar 

  • Kolodny Y, Luz B, Navon O (1983) Oxygen isotope variations in phosphate of biogenic apatites: 1. Fish bone apatite & rechecking the rules of the game. Earth Planet Sci Lett 64:398–404

    CAS  Google Scholar 

  • Kolowith LC, Ingall ED, Benner R (2001) Composition and cycling of marine organic phosphorus. Limnol Oceanogr 46:309–320

    CAS  Google Scholar 

  • Kumamoto J, Westheimer FH (1955) The hydrolysis of mono- and dibenzyl phosphates. J Am Chem Soc 77:2515–2518

    CAS  Google Scholar 

  • Lad C, Williams NH, Wolfendan R (2003) The rate of hydrolysis of phosphomonoester dianions and the exceptional catalytic proficiencies of protein and inositol phosphatase. Proc Natl Acad Sci U S A 100:5607–5610

    PubMed Central  PubMed  CAS  Google Scholar 

  • Larsen S, Middelboe V, Johansen HS (1989) The fate of 18O labeled phosphate in soil plant-systems. Plant Soil 117:143–145

    CAS  Google Scholar 

  • Lassila JK, Zalatan JG, Herschlag D (2011) Biological phosphoryl-transfer reactions: understanding mechanism and catalysis. Ann Rev Biochem 80:669–702

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lecuyer C, Greansjean P, Sheppard MF (1999) Oxygen isotope exchange between dissolved phosphate and water at temperatures <135 oC: inorganic versus biological fractionations. Geochim Cosmochim Acta 63:855–862

    CAS  Google Scholar 

  • Liang Y, Blake RE (2006a) Oxygen isotope composition of phosphate in organic compounds: isotope effects of extraction methods. Org Geochem 37:1263–1277

    CAS  Google Scholar 

  • Liang Y, Blake RE (2006b) Oxygen isotope signature of Pi regeneration from organic compounds by phosphomonoesterases and photooxidation. Geochim Cosmochim Acta 70:3957–3969

    CAS  Google Scholar 

  • Liang Y, Blake RE (2007) Oxygen isotope fractionation between apatite and dissolved aqueous phosphate: 20–45 oC. Chem Geol 238:121–133

    CAS  Google Scholar 

  • Liang Y, Blake RE (2009) Compound and enzyme-specific phosphodiester hydrolysis mechanisms revealed by delta O-18 of dissolved inorganic phosphate: implications for marine P cycling. Geochim Cosmochim Acta 73:3782–3794

    CAS  Google Scholar 

  • Longinelli A, Nuti S (1973a) Revised phosphate–water isotopic temperature scale. Earth Planet Sci Lett 19:373–376

    CAS  Google Scholar 

  • Longinelli A, Nuti S (1973b) Oxygen isotope measurements of phosphate from fish teeth and bones. Earth Planet Sci Lett 20:337–340

    CAS  Google Scholar 

  • Markel D, Kolodny Y, Luz B, Nishri A (1994) Phosphorus cycling and phosphorus sources in Lake Kineret: tracing by oxygen isotopes in phosphate. Israel J Earth Sci 43:165–178

    CAS  Google Scholar 

  • Matte A, Tari LW, Delbaere LJ (1998) How do kinases transfer phosphoryl groups? Structure 6:413–419

    PubMed  CAS  Google Scholar 

  • McKelvie ID (2005) Separation, preconcentration and speciation of organic phosphorus in environmental samples. In: Turner BL, Frossard E, Baldwin DS (eds) Organic phosphorus in the environment. CABI Publishing, London, pp 1–20

    Google Scholar 

  • McLaughlin K, Kendall C, Silva SR, Young M, Paytan A (2006) Phosphate oxygen isotope ratios as a tracer for sources and cycling of phosphate in North San Francisco Bay, California. J Geophys Res Biogeosci 111:3003

    Google Scholar 

  • Melander L, Saunders WH (1980) Reaction rates of isotopic molecules. Wiley, New York

    Google Scholar 

  • Melby ES, Soldat DJ, Barak P (2011) Synthesis and detection of oxygen-18 labeled phosphate. PLoS One 6:e18420

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mildvan AS (1979) The role of metals in enzyme-catalyzed substitutions at each phosphorus atom of ATP. Adv Enzymol 49:103–126

    PubMed  CAS  Google Scholar 

  • Mildvan AS (1997) Mechanisms of signaling and related enzymes. Proteins 24:401–416

    Google Scholar 

  • Mishra NC (2002) Nucleases: molecular biology and application. Wiley, New York

    Google Scholar 

  • Mopper K, Kieber DJ (2002) Photochemistry and the cycling of carbon, sulfur, nitrogen, and phosphorus. In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter. Academic Press, Amsterdam, pp 455–508

    Google Scholar 

  • Nadelhoffer KJ, Fry B (1994) Nitrogen isotope studies in forest ecosystems. In: Lajtha K, Michener R (eds) Stable isotopes in ecology and environmental science. Blackwell Scientific Publications, Boston, pp 23–44

    Google Scholar 

  • Nausch M, Nausch G (2007) Bioavailable dissolved organic phosphorus and phosphorus use by heterotrophic bacteria. Aquat Biol 1:151–160

    CAS  Google Scholar 

  • Nicholson D, Dyhrman S, Chavez F, Paytan A (2006) Alkaline phosphatase activity in the phytoplankton communities of Monterey Bay and San Francisco Bay. Limnol Oceanogr 51:874–883

    Google Scholar 

  • O’Neil JR, Vennemann TW, McKenzie WF (2003) Effects of speciation on equilibrium fractionations and rates of oxygen isotope exchange between (PO4)(aq) and H2O. Geochim Cosmochim Acta 67:3135–3144

    Google Scholar 

  • Oelmann Y, Kreutziger Y, Bol R, Wilcke W (2007) Nitrate leaching in soil: tracing the NO3 − sources with the help of stable N and O isotopes. Soil Biol Biochem 39:3024–3033

    CAS  Google Scholar 

  • Ohio EPA (2010) Ohio Lake Erie phosphorus task force final report. Ohio Environmental Protection Agency, Columbus, 109pp

    Google Scholar 

  • Paytan A, Luz B, Kolodny Y, Neori A (2002) Biologically mediated oxygen isotope exchange between water and phosphorus. Global Biogeochem Cycles 16:131–137

    Google Scholar 

  • Perry MJ (1972) Alkaline phosphatase activity in Subtropical Central North Pacific waters using a sensitive fluorometric method. Mar Biol 15:113–119

    CAS  Google Scholar 

  • RCN-SEES (2012) Coordinating phosphorus research to create a sustainable food system. http://sustainablep.asu.edu/prcn. Accessed on 8/11/2013

  • Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46:1–221

    Google Scholar 

  • Sandy EH, Blake RE, Chang SJ, Jun Y, Yub C (2013) Oxygen isotope signature of UV degradation of glyphosate and phosphonoacetate: tracing sources and cycling of phosphonates. J Hazard Mater 260:947–954

    PubMed  CAS  Google Scholar 

  • Sivula T, Salminena A, Parfenyev AN, Pohjanjoki P, Goldman A, Cooperman BS, Baykov A, Lathi R (1999) Evolutionary aspects of inorganic pyrophosphatase. FEBS Lett 454:75−80

    Google Scholar 

  • Smirnova IN, Kasho VN, Volk SE, Ivanov AH, Baykov AA (1995) Rates of elementary steps catalyzed by rat liver cytosolic and mitochondrial inorganic pyrophosphatases in both directions. Arch Biochem Biophys 318:340−348

    Google Scholar 

  • Smucker RA, Kim CK (1991) Chitinase activity in estuarine waters. In: Chrost RJ (ed) Microbial enzymes in aquatic environments. Springer, New York, pp 249–269

    Google Scholar 

  • Suh S, Yee S (2011) Phosphorus use-efficiency of agriculture and food system in the US. Chemosphere 84:806–813

    PubMed  CAS  Google Scholar 

  • Syers JK, Johnson AE, Curtin D (2008) Efficiency of soil and fertilizer phosphorus use: reconciling changing concepts of soil phosphorus behavior with agronomic information. FAO Fertilizer and Plant Nutrition Bulletin, 123 pp

    Google Scholar 

  • Taft JL, Loftus ME, Taylor WR (1977) Phosphate uptake from phosphomonoesters by phytoplankton in the Chesapeake Bay. Limnol Oceanogr 22:1012–1021

    CAS  Google Scholar 

  • Tamburini F, Pfahler V, Bunemann EK, Guelland K, Bernasconi SM, Frossard E (2012) Oxygen Isotopes unravel the role of microorganisms in phosphate cycling in soils. Environ Sci Technol 46:5956–5962

    PubMed  CAS  Google Scholar 

  • Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howath R, Schinder D, Schlesinger WH, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284

    PubMed  CAS  Google Scholar 

  • Tudge AP (1960) A method of analysis of oxygen isotopes in orthophosphate and its use in measurement of paleotemperatures. Geochim Cosmochim Acta 18:81–93

    CAS  Google Scholar 

  • van Moorleghem C, De Schutter N, Smolders E, Merckx R (2013) Bioavailability of organic phosphorus to Pseudokirchneriella subcapitata as affected by phosphorus starvation: an isotope dilution study. Water Res 47:3047–3056

    PubMed  Google Scholar 

  • Vanderzee C, Roevros N, Chou L (2007) Phosphorus speciation, transformation and retention in the Scheldt estuary (Belgium/The Netherlands) from the freshwater tidal limits to the North Sea. Mar Chem 106:76–91

    CAS  Google Scholar 

  • Vitousek PM, Reiners WA (1975) Ecosystem succession and nutrient retention: a hypothesis. Bioscience 25:370–381

    Google Scholar 

  • von Sperber C, Kries H, Tamburini F, Bernasconi SM, Frossard E (2014) The effect of phosphomonoesterases on the oxygen isotope composition of phosphate. Geochim Cosmochim Acta 125:519–527

    Google Scholar 

  • Walsh C (1979) Enzymatic reaction mechanisms. W H Freeman and Co, San Francisco

    Google Scholar 

  • Wang Y, Huntington TG, Osher LJ, Wassenaar LI, Trumbore SE, Amundson RG, Harden JW, McKnight DM, Schiff SL, Aiken GR, Lyons WB, Aravena RO, Baron JS (1998) Carbon cycling in terrestrial environments. In: Kendall C, McDonnell JJ (eds) Isotope tracers in catchment hydrology. Elsevier Science, Amsterdam, pp 577–610

    Google Scholar 

  • Weinhold F, Landis CR (2005) Valency and bonding: a natural bond orbital donor-acceptor perspective. Cambridge University Press, Cambridge

    Google Scholar 

  • Wetzel RG (1983) Limnology. WB Sounders and Company, Philadelphia

    Google Scholar 

  • Winogradsky S (1924) Sur la microflora autochtone de la terre arable. Comptes rendus hebdomadaires des seances de l’Academie des Sciences 178:1236–1239

    Google Scholar 

  • Wolfenden R, Ridgway C, Young G (1998) Spontaneous hydrolysis of ionized phosphate monoesters and diesters and the proficiencies of phosphatases and phosphodiesterases as catalysts. J Am Chem Soc 120:833–834

    CAS  Google Scholar 

  • Yang K, Metcalf WW (2004) A new activity for an old enzyme: Escherichia coli bacterial alkaline phosphatase is a phosphite-dependent hydrogenase. Proc Natl Acad Sci U S A 101:7919–7924

    PubMed Central  PubMed  CAS  Google Scholar 

  • Young MB, McLaughlin K, Kendall C, Stringfellow W, Rollog M, Elsbury K, Donald E, Paytan A (2009) Characterizing the oxygen isotopic composition of phosphate sources to aquatic ecosystems. Environ Sci Technol 43:5190–5196

    PubMed  CAS  Google Scholar 

  • Zalatan JG, Fenn TD, Herschlag D (2008) Comparative enzymology in the alkaline phosphatase superfamily to determine the catalytic role of an active-site metal ion. J Mol Biol 384:1174–1189

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zohar I, Shaviv A, Klass T, Roberts K, Paytan A (2010) Method for the analysis of oxygen isotopic composition of soil phosphate fractions. Environ Sci Technol 44:7583–7588

    PubMed  CAS  Google Scholar 

  • Zyryanov AB, Vener AV, Salminen A, Goldman A, Lahti R, Baykov AA (2004) Rates of elementary catalytic steps for different metal forms of the family II pyrophosphatase from Streptococcus gordonii. Biochemistry 43:1065−1074

    Google Scholar 

Download references

Acknowledgments

Authors would like to thank editors for the invitation to contribute this chapter. This work was supported by research grants from the US Department of Agriculture (NIFA awards 2012-67019-19320 and 2013-67019-21373) and ACS-PRF (53469-DNI2) to DPJ, and National Science Foundation (OCE 0928247) to REB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deb P. Jaisi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jaisi, D.P., Blake, R.E., Liang, Y., Chang, S.J. (2014). Investigation of Compound-Specific Organic-Inorganic Phosphorus Transformation Using Stable Isotope Ratios in Phosphate. In: He, Z., Zhang, H. (eds) Applied Manure and Nutrient Chemistry for Sustainable Agriculture and Environment. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8807-6_13

Download citation

Publish with us

Policies and ethics