Skip to main content

Observing Global Surface Water Flood Dynamics

  • Chapter
  • First Online:
The Earth's Hydrological Cycle

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 46))

Abstract

Flood waves moving along river systems are both a key determinant of globally important biogeochemical and ecological processes and, at particular times and particular places, a major environmental hazard. In developed countries, sophisticated observing networks and ancillary data, such as channel bathymetry and floodplain terrain, exist with which to understand and model floods. However, at global scales, satellite data currently provide the only means of undertaking such studies. At present, there is no satellite mission dedicated to observing surface water dynamics and, therefore, surface water scientists make use of a range of sensors developed for other purposes that are distinctly sub-optimal for the task in hand. Nevertheless, by careful combination of the data available from topographic mapping, oceanographic, cryospheric and geodetic satellites, progress in understanding some of the world’s major river, floodplain and wetland systems can be made. This paper reviews the surface water data sets available to hydrologists on a global scale and the recent progress made in the field. Further, the paper looks forward to the proposed NASA/CNES Surface Water Ocean Topography satellite mission that may for the first time provide an instrument that meets the needs of the hydrology community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adhikari P, Hong Y, Douglas KR, Kirschbaum D, Gourley JJ, Adler RF, Brakenridge GR (2010) A digitized global flood inventory (1998–2008): compilation and preliminary results. Nat Hazards 55:405–422

    Article  Google Scholar 

  • Alsdorf DE, Melack JM, Dunne T, Mertes LAK, Hess LL, Smith LC (2000) Interferometric radar measurements of water level changes on the Amazon floodplain. Nature 404:174–177

    Article  CAS  Google Scholar 

  • Alsdorf D, Birkett C, Dunne T, Melack J, Hess L (2001a) Water level changes in a large Amazon lake measured with spaceborne radar interferometry and altimetry. Geophys Res Lett 28:2671–2674

    Article  Google Scholar 

  • Alsdorf DE, Smith LC, Melack JM (2001b) Amazon water level changes measured with interferometric SIR-C radar. IEEE Trans Geosci Remote Sens 39:423–431

    Article  Google Scholar 

  • Alsdorf DE, Rodriguez E, Lettenmaier D (2007a) Measuring surface water from space. Rev Geophys 45(2):RG2002

    Article  Google Scholar 

  • Alsdorf DE, Bates PD, Melack JM, Wilson MD, Dunne T (2007b) The spatial and temporal complexity of the Amazon flood measured from space. Geophys Res Lett 34:L08402

    Article  Google Scholar 

  • Alsdorf D, Han S-C, Bates P, Melack J (2010) Seasonal water storage on the Amazon floodplain measured from satellites. Remote Sens Environ 114:2448–2456

    Article  Google Scholar 

  • Andreadis KM, Clark EA, Lettenmaier DP, Alsdorf DE (2007) Prospects for river discharge and depth estimation through assimilation of swath-altimetry into a raster-based hydrodynamics model. Geophys Res Lett 34. Paper no L10403

    Google Scholar 

  • Baltsavias EP (1999) A comparison between photogrammetry and laser scanning. ISPRS J Photogramm Remote Sens 54(2–3):83–94

    Article  Google Scholar 

  • Bates PD, Horritt M, Smith C, Mason D (1997) Integrating remote sensing observations of flood hydrology and hydraulic modelling. Hydrol Process 11:1777–1795

    Article  Google Scholar 

  • Bates PD, Stewart MD, Siggers GB, Smith CN, Hervouet J-M, Sellin RHJ (1998) Internal and external validation of a two-dimensional finite element model for river flood simulation. Proc Inst Civ Eng Water Marit Energy 130:127–141

    Article  Google Scholar 

  • Bates PD, Horritt MS, Aronica G, Beven K (2004) Bayesian updating of flood inundation likelihoods conditioned on flood extent data. Hydrol Process 18:3347–3370

    Article  Google Scholar 

  • Bates PD, Wilson MD, Horritt MS, Mason D, Holden N, Currie A (2006) Reach scale floodplain inundation dynamics observed using airborne synthetic aperture radar imagery: data analysis and modelling. J Hydrol 328:306–318

    Article  Google Scholar 

  • Beighley RE, Dunne T, Melack JM (2008) Impacts of climate variability and land use alterations on frequency distributions of terrestrial runoff loading to coastal waters in southern California. J Am Water Resour Assoc 44(1):62–74

    Article  Google Scholar 

  • Berry PAM, Garlick JD, Freeman JA, Mathers EL (2005) Global inland water monitoring from multi-mission altimetry. Geophys Res Lett 32 (16), article no. L16401

    Google Scholar 

  • Biancamaria S, Andreadis KM, Durand M, Clark EA, Rodriguez E, Mognard NM, Alsdorf DE, Lettenmaier DP, Oudin Y (2010) Preliminary characterization of SWOT hydrology error budget and global capabilities. IEEE JSTARS 3(1):6–19

    Google Scholar 

  • Biancamaria S, Durand M, Andreadis K, Bates PD, Boone A, Mognard NM, Rodriguez E, Alsdorf DE, Lettenmaier D, Clark E (2011) Assimilation of virtual wide swath altimetry to improve Arctic river modelling. Remote Sens Environ 115(2):373–381

    Article  Google Scholar 

  • Biggin DS, Blyth K (1996) A comparison of ERS-1 satellite radar and aerial photography for river flood mapping. J Chart Inst Water Eng Manag 10:59–64

    Article  Google Scholar 

  • Birkett C, Reynolds C, Beckley B, Doorn B (2011) From research to operations the USDA global reservoir and lake monitor. In: Vignudelli S, Kostianoy AG, Cipollini P, Benveniste J (eds) Coastal altimetry. Springer, New York, pp 19–50

    Chapter  Google Scholar 

  • Bjerklie DM, Dingman SL, Vorosmarty CJ, Bolster CH, Congalton RG (2003) Evaluating the potential for measuring river discharge from space. J Hydrol 278:17–38

    Article  Google Scholar 

  • Cvetkovic V, Carstens C, Selroos J-O, Destouni G (2012) Water and solute transport along hydrological pathways. Water Resour Res 48:W06537

    Google Scholar 

  • Destouni G, Persson K, Prieto C, Jarsjö J (2010) General quantification of catchment-scale nutrient and pollutant transport through the subsurface to surface and coastal waters. Environ Sci Technol 44:2048–2055

    Article  CAS  Google Scholar 

  • Destouni G, Jaramillo F, Prieto C (2013) Hydroclimatic shifts driven by human water use for food and energy production. Nat Clim Change 3:213–217

    Article  Google Scholar 

  • Di Baldassarre G, Montanari A (2009) Uncertainty in river discharge observations: a quantitative analysis. Hydrol Earth Syst Sci 13:913–921

    Article  Google Scholar 

  • Di Baldassarre G, Schumann G, Bates PD (2009) Near real time satellite imagery to support and verify timely flood modelling. Hydrol Process 23:799–803

    Article  Google Scholar 

  • Durand M, Andreadis KM, Alsdorf DE, Lettenmaier DP, Moller D, Wilson M (2008) Estimation of bathymetric depth and slope from data assimilation of swath altimetry into a hydrodynamic model. Geophys Res Lett 35:L20401

    Article  Google Scholar 

  • Durand M, Rodriguez E, Alsdorf DE, Trigg M (2010) Estimating river depth from remote sensing swath interferometry measurements of river height, slope, and width. IEEE J Sel Top Appl Earth Obs Remote Sens 3(1):20–31

    Article  Google Scholar 

  • Durand M, Neal J, RodrĂ­guez E, Andreadis K, Smith L, Yoon Y (submitted) Estimating reach-averaged discharge for the River Severn from measurements of river water surface elevation and slope. J Hydrol

    Google Scholar 

  • Falorni G, Teles V, Vivoni ER, Bras RL, Amaratunga KS (2005) Analysis and characterization of the vertical accuracy of digital elevation models from the shuttle radar topography mission. J Geophys Res 110:F02005

    Article  Google Scholar 

  • Farr TG, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Rosen P, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Burbank D, Oskin M, Alsdorf D (2007) The shuttle radar topography mission. Rev Geophys 45(2):RG2004

    Article  Google Scholar 

  • Fekete BM, Looser U, Pietroniro A, Robarts RD (2012) Rationale for monitoring discharge on the ground. J Hydrometeorol 13(6):1977–1986

    Article  Google Scholar 

  • Frey KE, Smith LC (2005) Amplified carbon release from vast west Siberian peatlands by 2100. Geophys Res Lett 32:L09401

    Google Scholar 

  • GarcĂ­a-Pintado J, Neal JC, Mason DC, Dance S, Bates PD (2013) Scheduling satellite-based SAR acquisition for sequential assimilation of water level observations into flood modelling. J Hydrol 495:252–266

    Article  Google Scholar 

  • Giustarini L, Hostache R, Matgen P, Schumann G, Bates PD, Mason DC (2013) A change detection approach to flood mapping in urban areas using TerraSAR-X. IEEE Trans Geosci Remote Sens 51(4):2417–2430

    Article  Google Scholar 

  • Goldstein RM, Engelhardt H, Kamb B, Frolich RM (1993) Satellite radar interferometry for monitoring ice sheet motion: application to an Antarctic ice stream. Science 262:1525–1530

    Article  CAS  Google Scholar 

  • Gomes-Pereira LM, Wicherson RJ (1999) Suitability of laser data for deriving geographical data: a case study in the context of management of fluvial zones. Photogramm Remote Sens 54:105–114

    Article  Google Scholar 

  • Guha-Sapir D, Vos F, Below R, Ponserre S (2012) Annual disaster statistical review 2011: the numbers and trends. CRED, Brussels, 52 pp

    Google Scholar 

  • Hall AC, Schumann GJ-P, Bamber JL, Bates PD, Trigg MA (2012) Geodetic corrections to Amazon River water level gauges using ICESat altimetry. Water Resour Res 48. Paper W06602

    Google Scholar 

  • Hamilton SK, Sippel SJ, Melack JM (2002) Comparison of inundation patterns among major South American floodplains. J Geophys Res Atmos 107(D20). Article no 8308

    Google Scholar 

  • Hodgson ME, Jensen JR, Schmidt L, Schill S, Davis B (2003) An evaluation of LIDAR- and IFSAR-derived digital elevation models in leaf-on conditions with USGS Level 1 and Level 2 DEMs. Remote Sens Environ 84(2):295–308

    Article  Google Scholar 

  • Horritt MS (2000) Calibration of a two-dimensional finite element flood flow model using satellite radar imagery. Water Resour Res 36(11):3279–3291

    Article  Google Scholar 

  • Hostache R, Lai X, Monnier J, Puech C (2010) Assimilation of spatially distributed water levels into a shallow-water flood model. Part II: use of a remote sensing image of Mosel River. J Hydrol 390(3–4):257–268. doi:10.1016/j.jhydrol.2010.07.003

    Article  Google Scholar 

  • Hunter NM, Bates PD, Horritt MS, Wilson MD (2007) Simple spatially-distributed models for predicting flood inundation: a review. Geomorphology 90:208–225

    Article  Google Scholar 

  • Jung HC, Jasinski M, Kim J-W, Shum CK, Bates P, Neal J, Lee H, Alsdorf D (2012) Calibration of two-dimensional floodplain modeling in the Atchafalaya River Basin using SAR interferometry. Water Resour Res 48. Paper W07511

    Google Scholar 

  • Knight DW, Shiono K (1996) River channel and floodplain hydraulics. In: Anderson MG, Walling DE, Bates PD (eds) Floodplain processes. Wiley, Chichester, pp 139–182

    Google Scholar 

  • Krabill WB, Collins JG, Link LE, Swift RN, Butler ML (1984) Airborne laser topographic mapping results. Photogramm Eng Remote Sens 50:685–694

    Google Scholar 

  • Lai X, Monnier J (2009) Assimilation of spatially distributed water levels into a shallow-water flood model. Part I: Mathematical method and test case. J Hydrol 377(1–2):1-11. doi:10.1016/j.jhydrol.2009.07.058, ISSN:0022-1694

    Article  Google Scholar 

  • Lane SN (2000) The measurement of river channel morphology using digital photogrammetry. Photogramm Rec 16(96):937–957

    Article  Google Scholar 

  • Lyon SW, Mörth M, Humborg C, Giesler R, Destouni G (2010) The relationship between subsurface hydrology and dissolved carbon fluxes for a sub-Arctic catchment. Hydrol Earth Syst Sci 14:941–950

    Article  CAS  Google Scholar 

  • Marcus WA, Fonstad MA (2008) Optical remote mapping of rivers at sub-meter resolutions and watershed extents. Earth Surf Proc Land 33:4–24

    Article  Google Scholar 

  • Mason DM, Horritt MS, Dall’Amico JT, Scott TR, Bates PD (2007) Improving river flood extent delineation from synthetic aperture radar using airborne laser altimetry. IEEE Trans Geosci Remote Sens 45(12):3932–3943

    Article  Google Scholar 

  • Mason DC, Bates PD, Dall’Amico JT (2009) Calibration of uncertain flood inundation models using remotely sensed water levels. J Hydrol 368:224–236

    Article  Google Scholar 

  • Massonnet D, Rossi M, Carmona C, Adragna F, Peltzer G, Feigl K, Rabaute T (1993) The displacement field of the Landers earthquake mapped by radar interferometry. Nature 364:138–142

    Article  Google Scholar 

  • Matgen P, Schumann G, Henry J, Hoffmann L, Pfister L (2007) Integration of SAR-derived inundation areas, high precision topographic data and a river flow model toward real-time flood management. Int J Appl Earth Obs Geoinf 9(3):247–263

    Article  Google Scholar 

  • Mertes LAK et al (1995) Spatial patterns of hydrology, geomorphology and vegetation on the floodplain of the Amazon River in Brazil: a remote sensing perspective. Geomorphology 13:215–232

    Article  Google Scholar 

  • Mertes LAK, Dunne T, Martinelli LA (1996) Channel–floodplain geomorphology along the Solimoes-Amazon River, Brazil. Geol Soc Am Bull 108(9):1089–1107

    Article  Google Scholar 

  • Neal J, Schumann G, Bates P, Buytaert W, Matgen P, Pappenberger F (2009) A data assimilation approach to discharge estimation from space. Hydrol Process 23(25):3641–3649

    Article  Google Scholar 

  • Neal J, Schumann GJ-P, Bates PD (2012) A simple model for simulating river hydraulics and floodplain inundation over large and data sparse areas. Water Resour Res 48. Paper no W11506

    Google Scholar 

  • NERC (1975) Flood studies report, 5 volumes. Natural Environment Research Council, London

    Google Scholar 

  • Nicholas AP, Mitchell CA (2003) Numerical simulation of overbank processes in topographically complex floodplain environments. Hydrol Process 17(4):727–746

    Article  Google Scholar 

  • O’Loughlin F, Schumann GJ-P, Trigg M, Bates PD (2013) Hydraulic characterization of the middle reach of the Congo River. Water Resour Res 49(8):5059–5070

    Article  Google Scholar 

  • Paiva RCD, Collischonn W, Tucci CEM (2011) Large scale hydrologic and hydrodynamic modeling using limited data and a GIS based approach. J Hydrol 406(3–4):170–181

    Article  Google Scholar 

  • Paiva RCD, Collischonn W, Buarque DC (2013) Validation of a full hydrodynamic model for large-scale hydrologic modelling in the Amazon. Hydrol Process 27(3):333–346

    Article  Google Scholar 

  • Paz AR, Bravo JM, Allasia D, Collischonn W, Tucci CEM (2010) Large-scale hydrodynamic modeling of a complex river network and floodplains. J Hydrol Eng 15(2):152–165

    Article  Google Scholar 

  • Pelletier MP (1987) Uncertainties in the determination of river discharge: a literature review. Can J Civ Eng 15:834–850

    Article  Google Scholar 

  • Prigent C, Papa F, Aires F, Rossow WB, Matthews E (2007) Global inundation dynamics inferred from multiple satellite observations, 1993–2000. J Geophys Res 112:D12107

    Article  Google Scholar 

  • Richey JE, Mertes LAK, Dunne T, Victoria RL, Forsberg BR, Tancredi ACNS, Oliveira E (1989) Sources and routing of the Amazon River flood wave. Glob Biogeochem Cycles 3:191–204

    Article  Google Scholar 

  • Richey JE, Melack JM, Aufdenkampe AK, Ballester VM, Hess LL (2002) Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416:617–620

    Article  CAS  Google Scholar 

  • Rodriguez E, Morris CS, Belz JE (2006) A global assessment of the SRTM performance. Photogramm Eng Remote Sens 72(3):249–260

    Article  Google Scholar 

  • Sanders BF (2007) Evaluation of on-line DEMs for flood inundation modelling. Adv Water Resour 30(8):1831–1843

    Article  Google Scholar 

  • Schumann G, Bates PD, Horritt M, Matgen P, Pappenberger F (2009) Progress in integration of remote sensing derived flood extent and stage data and hydraulic models. Rev Geophys 47:RG4001

    Article  Google Scholar 

  • Schumann G, Di Baldassarre G, Alsdorf DE, Bates PD (2010) Near real-time flood wave approximation on large rivers from space: application to the River Po, Northern Italy. Water Resour Res 46. Paper no W05601

    Google Scholar 

  • Schumann GJ-P, Mason DC, Di Baldassarre G, Bates PD (2012) The use of radar imagery in riverine flood inundation studies. In: Piegay H, Carbonneau P (eds) Fluvial remote sensing for science and management. Wiley, Chichester, pp 115–140

    Chapter  Google Scholar 

  • Smith LC (1997) Satellite remote sensing of river inundation area, stage, and discharge: a review. Hydrol Process 11:1427–1439

    Article  Google Scholar 

  • Tachikawa T, Kaku M, Iwasaki A, Gesch D, Oimoen M, Zhang Z, Danielson J, Krieger T, Curtis B, Haase J, Abrams M, Crippen R, Carabajal C (2011) ASTER global digital elevation model version 2—summary of validation results. NASA, 27 pp. Available from http://www.jspacesystems.or.jp/ersdac/GDEM/ver2Validation/Summary_GDEM2_validation_report_final.pdf

  • Tockner K, Stanford JA (2002) Riverine flood plains: present state and future trends. Environ Conserv 29(1):308–330

    Google Scholar 

  • Trigg MA, Bates PD, Wilson MD, Schumann G (2012) Floodplain channel morphology and networks of the middle Amazon River. Water Resour Res 48. Paper no W10504

    Google Scholar 

  • Turner-Gillespie DF, Smith JA, Bates PD (2003) Attenuating reaches and the regional flood response of an urbanising drainage basin. Adv Water Resour 26:673–684

    Article  Google Scholar 

  • Vörösmarty CJ (2002) Global water assessment and potential contributions from earth systems science. Aquat Sci 64(4):328–351

    Article  Google Scholar 

  • Westaway RM, Lane SN, Hicks DM (2003) Remote survey of large-scale braided, gravel-bed rivers using digital photogrammetry and image analysis. Int J Remote Sens 24(4):795–815

    Article  Google Scholar 

  • Wilson MD, Bates PD, Alsdorf D, Forsberg B, Horritt M, Melack J, Frappart F, Famiglietti J (2007) Modeling large-scale inundation of Amazonian seasonally flooded wetlands. Geophys Res Lett 34. Paper no L15404

    Google Scholar 

  • Yoon Y, Durand M, Merry CJ, Clark EA, Andreadis KM, Alsdorf DE (2012) Estimating river bathymetry from data assimilation of synthetic SWOT measurements. J Hydrol 464–465:363–375

    Article  Google Scholar 

  • Zhuang Q, Melack JM, Zimov S, Walter KM, Butenhoff CL, Khalil MAK (2009) Global methane emissions from wetlands, rice paddies, and lakes. EOS Trans Am Geophys Union 90(5):37–44

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul D. Bates .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bates, P.D., Neal, J.C., Alsdorf, D., Schumann, G.JP. (2013). Observing Global Surface Water Flood Dynamics. In: Bengtsson, L., et al. The Earth's Hydrological Cycle. Space Sciences Series of ISSI, vol 46. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8789-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-8789-5_16

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-8788-8

  • Online ISBN: 978-94-017-8789-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics