Skip to main content

Odorant-Receptor Interaction

  • Chapter
  • First Online:
Bioelectronic Nose

Abstract

Odorant-receptor interactions constitute a key step in the olfactory detection of chemical compounds. Various studies support the combinatorial coding of olfaction, in which each odorant activates an array of odorant receptors and each odorant receptor is capable of recognizing multiple odorants, while large-scale studies involving numerous odorants and odorant receptors help to resolve the tuning specificities of receptor repertoires. In the meantime, the proteinaceous content of the nasal mucus, including odorant binding proteins and different types of xenobiotic-metabolizing enzymes, also contributes to odorant receptor activation by transporting, concentrating, converting, and/or ultimately removing odorants from nasal mucosa. In addition, the presence of metal ions, notably copper ions, is known to be important for the activation of odorant receptors for certain types of metal-coordinating odorants. Finally, prediction algorithms based on odorant properties and receptor structures are becoming increasingly feasible for investigating detailed mechanisms involved in odorant-receptor interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Malnic B, Godfrey PA, Buck LB (2004) The human olfactory receptor gene family. Proc Natl Acad Sci U S A 101(8):2584–2589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Godfrey PA, Malnic B, Buck LB (2004) The mouse olfactory receptor gene family. Proc Natl Acad Sci U S A 10(7):2156–2161

    Article  Google Scholar 

  3. Niimura Y, Nei M (2005) Evolutionary changes of the number of olfactory receptor genes in the human and mouse lineages. Gene 346:23–28

    Article  CAS  PubMed  Google Scholar 

  4. Polak EH (1973) Multiple profile-multiple receptor site model for vertebrate olfaction. J Theor Biol 40:469–484

    Article  CAS  PubMed  Google Scholar 

  5. Malnic B, Hirono J, Sato T, Buck LB (1999) Combinatorial receptor codes for odors. Cell 96:713–723

    Article  CAS  PubMed  Google Scholar 

  6. Kajiya K, Inaki K, Tanaka M, Haga T, Kataoka H, Touhara K (2001) Molecular bases of odor discrimination: Reconstitution of olfactory receptors that recognize overlapping sets of odorants. J Neurosci 21(16):6018–6025

    CAS  PubMed  Google Scholar 

  7. Araneda RC, Kini AD, Firestein S (2000) The molecular receptive range of an odorant receptor. Nat Neurosci 3(12):1248–1255

    Article  CAS  PubMed  Google Scholar 

  8. Araneda RC, Peterlin Z, Zhang X, Chesler A, Firestein S (2004) A pharmacological profile of the aldehyde receptor repertoire in rat olfactory epithelium. J Physiol 555(Pt 3):743–756

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Katada S, Hirokawa T, Oka Y, Suwa M, Touhara K (2005) Structural basis for a broad but selective ligand spectrum of a mouse olfactory receptor: mapping the odorant-binding site. J Neurosci 25(7):1806–1815

    Article  CAS  PubMed  Google Scholar 

  10. Spehr M, Gisselmann G, Poplawski A, Riffell JA, Wetzel CH, Zimmer RK, Hatt H (2003) Identification of a testicular odorant receptor mediating human sperm chemotaxis. Science 299(5615):2054–2058

    Article  CAS  PubMed  Google Scholar 

  11. Gaillard I, Rouquier S, Pin JP, Mollard P, Richard S, Barnabe C, Demaille J, Giorgi D (2002) A single olfactory receptor specifically binds a set of odorant molecules. Eur J Neurosci 15(3):409–418

    Article  PubMed  Google Scholar 

  12. Wetzel CH, Oles M, Wellerdieck C, Kuczkowiak M, Gisselmann G, Hatt H (1999) Specificity and sensitivity of a human olfactory receptor functionally expressed in human embryonic kidney 293 cells and Xenopus Laevis oocytes. J Neurosci 19(17):7426–7433

    CAS  PubMed  Google Scholar 

  13. Bozza T, Feinstein P, Zheng C, Mombaerts P (2002) Odorant receptor expression defines functional units in the mouse olfactory system. J Neurosci 22(8):3033–3043

    CAS  PubMed  Google Scholar 

  14. Saito H, Kubota M, Roberts RW, Chi Q, Matsunami H (2004) RTP family members induce functional expression of mammalian odorant receptors. Cell 119(5):679–691

    Article  CAS  PubMed  Google Scholar 

  15. Zhuang H, Matsunami H (2007) Synergism of accessory factors in functional expression of mammalian odorant receptors. J Biol Chem 282(20):15284–15293

    Article  CAS  PubMed  Google Scholar 

  16. Zhuang H, Matsunami H (2008) Evaluating cell-surface expression and measuring activation of mammalian odorant receptors in heterologous cells. Nat Protoc 3(9):1402–1413

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Saito H, Chi Q, Zhuang H, Matsunami H, Mainland JD (2009) Odor coding by a mammalian receptor repertoire. Sci Signal 2(60):ra9.

    PubMed Central  PubMed  Google Scholar 

  18. Nara K, Saraiva LR, Ye X, Buck LB (2011) A large-scale analysis of odor coding in the olfactory epithelium. J Neurosci 31(25):9179–9191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Oka Y, Katada S, Omura M, Suwa M, Yoshihara Y, Touhara K (2006) Odorant receptor map in the mouse olfactory bulb: in vivo sensitivity and specificity of receptor-defined glomeruli. Neuron 52(5):857–869

    Article  CAS  PubMed  Google Scholar 

  20. Getchell TV, Margolis FL, Getchell ML (1984) Perireceptor and receptor events in vertebrate olfaction. Prog Neurobiol 23(4):317–345

    Article  CAS  PubMed  Google Scholar 

  21. Debat H, Eloit C, Blon F, Sarazin B, Henry C, Huet JC, Trotier D, Pernollet JC (2007) Identification of human olfactory cleft mucus proteins using proteomic analysis. J Proteome Res 6(5):1985–1996

    Article  CAS  PubMed  Google Scholar 

  22. Mayer U, Kuller A, Daiber PC, Neudorf I, Warnken U, Schnolzer M, Frings S, Mohrlen F (2009) The proteome of rat olfactory sensory cilia. Proteomics 9(2):322–334

    Article  CAS  PubMed  Google Scholar 

  23. Pelosi P, Baldaccini NE, Pisanelli AM (1982) Identification of a specific olfactory receptor for 2-isobutyl-3-methoxypyrazine. Biochem J 201(1):245–248

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Flower DR, North AC, Sansom CE (2000) The lipocalin protein family: structural and sequence overview. Biochim Biophys Acta 1482(1-2):9–24

    Article  CAS  PubMed  Google Scholar 

  25. Steinbrecht RA (1998) Odorant-binding proteins: expression and function. Ann N Y Acad Sci 855:323–332

    Article  CAS  PubMed  Google Scholar 

  26. Briand L, Nespoulous C, Perez V, Remy JJ, Huet JC, Pernollet JC (2000) Ligand-binding properties and structural characterization of a novel rat odorant-binding protein variant. Eur J Biochem 267(10):3079–3089

    Article  CAS  PubMed  Google Scholar 

  27. Pevsner J, Hou V, Snowman AM, Snyder SH (1990) Odorant-binding protein. Characterization of ligand binding. J Biol Chem 265(11):6118–6125

    CAS  PubMed  Google Scholar 

  28. Herent MF, Collin S, Pelosi P (1995) Affinities of nutty and green-smelling pyrazines and thiazoles to odorant-binding proteins, in relation with their lipophilicity. Chem Senses 20(6):601–608

    Article  CAS  PubMed  Google Scholar 

  29. Tcatchoff L, Nespoulous C, Pernollet JC, Briand L (2006) A single lysyl residue defines the binding specificity of a human odorant-binding protein for aldehydes. FEBS Lett 580(8):2102–2108

    Article  CAS  PubMed  Google Scholar 

  30. Lacazette E, Gachon AM, Pitiot G (2000) A novel human odorant-binding protein gene family resulting from genomic duplicons at 9q34: differential expression in the oral and genital spheres. Hum Mol Genet 9(2):289–301

    Article  CAS  PubMed  Google Scholar 

  31. Pes D, Pelosi P (1995) Odorant-binding proteins of the mouse. Comp Biochem Physiol B Biochem Mol Biol 112(3):471–479

    Article  CAS  PubMed  Google Scholar 

  32. Matarazzo V, Zsurger N, Guillemot JC, Clot-Faybesse O, Botto JM, Dal Farra C, Crowe M, Demaille J, Vincent JP, Mazella J, Ronin C (2002) Porcine odorant-binding protein selectively binds to a human olfactory receptor. Chem Senses 27(8):691–701

    Article  CAS  PubMed  Google Scholar 

  33. Strotmann J, Breer H (2011) Internalization of odorant-binding proteins into the mouse olfactory epithelium. Histochem Cell Biol 136(3):357–369

    Article  CAS  PubMed  Google Scholar 

  34. Mori I, Nishiyama Y, Yokochi T, Kimura Y (2005) Olfactory transmission of neurotropic viruses. J Neurovirol 11(2):129–137

    Article  PubMed  Google Scholar 

  35. Minn A, Leclerc S, Heydel JM, Minn AL, Denizcot C, Cattarelli M, Netter P, Gradinaru D (2002) Drug transport into the mammalian brain: the nasal pathway and its specific metabolic barrier. J Drug Target 10(4):285–296

    Article  CAS  PubMed  Google Scholar 

  36. Dahl AR, Briner TJ (1980) Biological fate of a representative lipophilic metal compound (ferrocene) deposited by inhalation in the respiratory tract of rats. Toxicol App Pharmacol 56(2):232–239

    Article  CAS  Google Scholar 

  37. Iyanagi T (2007) Molecular mechanism of phase I and phase II drug-metabolizing enzymes: implications for detoxification. Int Rev Cytol 260:35–112

    Article  CAS  PubMed  Google Scholar 

  38. Ayrton A, Morgan P (2001) Role of transport proteins in drug absorption, distribution and excretion. Xenobiotica 31(8–9):469–497

    Article  CAS  PubMed  Google Scholar 

  39. Bogdanffy MS, Randall HW, Morgan KT (1987) Biochemical quantitation and histochemical localization of carboxylesterase in the nasal passages of the Fischer-344 rat and B6C3F1 mouse. Toxicol Appl Pharmacol 88(2):183–194

    Article  CAS  PubMed  Google Scholar 

  40. Kurosaki M, Terao M, Barzago MM, Bastone A, Bernardinello D, Salmona M, Garattini E (2004) The aldehyde oxidase gene cluster in mice and rats. Aldehyde oxidase homologue 3, a novel member of the molybdo-flavoenzyme family with selective expression in the olfactory mucosa. J Biol Chem 279(48):50482–50498

    Article  CAS  PubMed  Google Scholar 

  41. Thornton-Manning JR, Nikula KJ, Hotchkiss JA, Avila KJ, Rohrbacher KD, Ding X, Dahl AR (1997) Nasal cytochrome P450 2A: identification, regional localization, and metabolic activity toward hexamethylphosphoramide, a known nasal carcinogen. Toxicol Appl Pharmacol 142(1):22–30

    Article  CAS  PubMed  Google Scholar 

  42. Kimoto M, Iwai S, Maeda T, Yura Y, Fernley RT, Ogawa Y (2004) Carbonic anhydrase VI in the mouse nasal gland. J Histochem Cytochem 52(8):1057–1062

    Article  CAS  PubMed  Google Scholar 

  43. Durand N, Carot-Sans G, Chertemps T, Bozzolan F, Party V, Renou M, Debernard S, Rosell G, Maibeche-Coisne M (2010) Characterization of an antennal carboxylesterase from the pest moth Spodoptera littoralis degrading a host plant odorant. PLoS One 5(11):e15026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Ishida Y, Leal WS (2005) Rapid inactivation of a moth pheromone. Proc Natl Acad Sci U S A 102(39):14075–14079

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Rybczynski R, Reagan J, Lerner MR (1989) A pheromone-degrading aldehyde oxidase in the antennae of the moth Manduca sexta. J Neurosci 9(4):1341–1353

    CAS  PubMed  Google Scholar 

  46. Ishida Y, Leal WS (2008) Chiral discrimination of the Japanese beetle sex pheromone and a behavioral antagonist by a pheromone-degrading enzyme. Proc Natl Acad Sci U S A 105(26):9076–9080

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Maibeche-Coisne M, Nikonov AA, Ishida Y, Jacquin-Joly E, Leal WS (2004) Pheromone anosmia in a scarab beetle induced by in vivo inhibition of a pheromone-degrading enzyme. Proc Natl Acad Sci U S A 101(31):11459–11464

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Zhuo X, Gu J, Zhang QY, Spink DC, Kaminsky LS, Ding X (1999) Biotransformation of coumarin by rodent and human cytochromes P-450: metabolic basis of tissue-selective toxicity in olfactory mucosa of rats and mice. J Pharmacol Exp Ther 288(2):463–471

    CAS  PubMed  Google Scholar 

  49. Nagashima A, Touhara K (2010) Enzymatic conversion of odorants in nasal mucus affects olfactory glomerular activation patterns and odor perception. J Neurosci 30(48):16391–16398

    Article  CAS  PubMed  Google Scholar 

  50. Thiebaud N, Veloso DSilvaS, Jakob I, Sicard G, Chevalier J, Menetrier F, Berdeaux O, Artur Y, Heydel JM, Le Bon AM (2013) Odorant metabolism catalyzed by olfactory mucosal enzymes influences peripheral olfactory responses in rats. PLoS One 8(3):e59547

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Lazard D, Zupko K, Poria Y, Nef P, Lazarovits J, Horn S, Khen M, Lancet D (1991) Odorant signal termination by olfactory UDP glucuronosyl transferase. Nature 349(6312):790–793

    Article  CAS  PubMed  Google Scholar 

  52. Kinouchi K, Standifer KM, Pasternak GW (1990) Modulation of mu 1, mu 2, and delta opioid binding by divalent cations. Biochem Pharmacol 40(2):382–384

    Article  CAS  PubMed  Google Scholar 

  53. Gerlach LO, Jakobsen JS, Jensen KP, Rosenkilde MR, Skerlj RT, Ryde U, Bridger GJ, Schwartz TW (2003) Metal ion enhanced binding of AMD3100 to Asp262 in the CXCR4 receptor. Biochemistry 42(3):710–717

    Article  CAS  PubMed  Google Scholar 

  54. Holst B, Elling CE, Schwartz TW (2002) Metal ion-mediated agonism and agonist enhancement in melanocortin MC1 and MC4 receptors. J Biol Chem 277(49):47662–47670

    Article  CAS  PubMed  Google Scholar 

  55. Crabtree RH (1978) Copper(I)—possible olfactory binding-site. J Inorg Nucl Chem 40(7):1453

    Article  CAS  Google Scholar 

  56. Henkin RI, Bradley DF (1969) Regulation of taste acuity by thiols and metal ions. Proc Natl Acad Sci U S A 62(1):30–37

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Day JC (1978) New nitrogen bases with severe steric hindrance due to flanking tert-butyl groups—cis-2,6-di-tert-butylpiperidine—possible steric blocking of olfaction. J Org Chem 43(19):3646–3649

    Article  CAS  Google Scholar 

  58. Wang J, Luthey-Schulten ZA, Suslick KS (2003) Is the olfactory receptor a metalloprotein? Proc Natl Acad Sci U S A 100(6):3035–3039

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Duan X, Block E, Li Z, Connelly T, Zhang J, Huang Z, Su X, Pan Y, Wu L, Chi Q, Thomas S, Zhang S, Ma M, Matsunami H, Chen GQ, Zhuang H (2012) Crucial role of copper in detection of metal-coordinating odorants. Proc Natl Acad Sci U S A 109(9):3492–3497

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Lin DY, Zhang SZ, Block E, Katz LC (2005) Encoding social signals in the mouse main olfactory bulb. Nature 434(7032):470–477

    Article  CAS  PubMed  Google Scholar 

  61. Tian H, Ma M (2008) Differential development of odorant receptor expression patterns in the olfactory epithelium: a quantitative analysis in the mouse septal organ. Dev Neurobiol 68(4):476–486

    Article  PubMed Central  PubMed  Google Scholar 

  62. Viswaprakash N, Dennis JC, Globa L, Pustovyy O, Josephson EM, Kanju P, Morrison EE, Vodyanoy VJ (2009) Enhancement of odorant-induced responses in olfactory receptor neurons by zinc nanoparticles. Chem Senses 34(7):547–557

    Article  CAS  PubMed  Google Scholar 

  63. Triller A, Boulden EA, Churchill A, Hatt H, Englund J, Spehr M, Sell CS (2008) Odorant-receptor interactions and odor percept: a chemical perspective. Chem Biodivers 5(6):862–886

    Article  CAS  PubMed  Google Scholar 

  64. Khan RM, Luk CH, Flinker A, Aggarwal A, Lapid H, Haddad R, Sobel N (2007) Predicting odor pleasantness from odorant structure: pleasantness as a reflection of the physical world. J Neurosci 27(37):10015–10023

    Article  CAS  PubMed  Google Scholar 

  65. Haddad R, Khan R, Takahashi YK, Mori K, Harel D, Sobel N (2008) A metric for odorant comparison. Nat Methods 5(5):425–429

    Article  CAS  PubMed  Google Scholar 

  66. Schmuker M, de Bruyne M, Hahnel M, Schneider G (2007) Predicting olfactory receptor neuron responses from odorant structure. Chem Cent J 1:11

    Article  PubMed Central  PubMed  Google Scholar 

  67. Liu X, Su X, Wang F, Huang Z, Wang Q, Li Z, Zhang R, Wu L, Pan Y, Chen Y, Zhuang H, Chen G, Shi T, Zhang J (2011) ODORactor: a web server for deciphering olfactory coding. Bioinformatics 27(16):2302–2303

    Article  CAS  PubMed  Google Scholar 

  68. Zozulya S, Echeverri F, Nguyen T (2001) The human olfactory receptor repertoire. Genome Biol 2(6):RESEARCH0018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Zhang X, Firestein S (2002) The olfactory receptor gene superfamily of the mouse. Nat Neurosci 5(2):124–133

    CAS  PubMed  Google Scholar 

  70. Man O, Gilad Y, Lancet D (2004) Prediction of the odorant binding site of olfactory receptor proteins by human-mouse comparisons. Protein Sci 13(1):240–254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Singer MS (2000) Analysis of the molecular basis for octanal interactions in the expressed rat 17 olfactory receptor. Chem Senses 25(2):155–165

    Article  CAS  PubMed  Google Scholar 

  72. Hall SE, Floriano WB, Vaidehi N, Goddard WA 3rd (2004) Predicted 3-D structures for mouse I7 and rat I7 olfactory receptors and comparison of predicted odor recognition profiles with experiment. Chem Senses 29(7):595–616

    Article  CAS  PubMed  Google Scholar 

  73. Kurland MD, Newcomer MB, Peterlin Z, Ryan K, Firestein S, Batista VS (2010) Discrimination of saturated aldehydes by the rat I7 olfactory receptor. Biochemistry 49(30):6302–6304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to Dr. Tai Hyun Park for the invitation to contribute to the book. Our work described here is supported by grants from National Institutes of Health (to H.M.), Chinese National Natural Science Foundation, the National Basic Research Program of China’s 973 Program, Shanghai Municipal Education Commission, Shanghai Education Development Foundation, the Science and Technology Commission of Shanghai (all to H.Z.), and Shanghai Jiaotong University School of Medicine (to X.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanyi Zhuang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Su, X., Matsunami, H., Zhuang, H. (2014). Odorant-Receptor Interaction. In: Park, T. (eds) Bioelectronic Nose. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8613-3_4

Download citation

Publish with us

Policies and ethics