Skip to main content

Applications and Perspectives of Bioelectronic Nose

  • Chapter
  • First Online:
Bioelectronic Nose

Abstract

Detection and discrimination of odorants has great potential for applications in various fields, such as the food industry, fragrance and flavor industry, environmental monitoring, and biomedical diagnosis. For several decades, many efforts have been made to control the process of food production and fragrance and flavor of brands, and to monitor environmental pollutions through the use of comparable technology. There have been several classical methods for these purposes. Conventional methods, such as GC/MS or human sensory panels (olfactometry), have been conventionally used, but they are expensive, labor-intensive, time-consuming and affected by large variations according to the conditions of analysis. These drawbacks increased the requirement for new technique, substituting classical methods, and the electronic nose has been developed over the past couple of decades. However, the electronic nose has also many limitations to be overcome. Recently, the bioelectronic nose, using biological components, has been developed. The bioelectronic nose has a bright prospect as a powerful and effective biosensing system, capable of detecting and discriminating a huge variety of odorant molecules. The most meaningful characteristics of the bioelectronic nose are that it mimics the human olfactory system. The bioelectronic nose is expected to replace the sensory evaluation method. It can be used for standardization of smell, development of code for each smell, and visualization of smell. Consequently, the development of the bioelectronic nose is expected to open up many new possibilities to improve the quality of our life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gaillard I, Rouquier S, Giorgi D (2004) Olfactory receptors. Cell Mol Life Sci 61(4):456–469

    CAS  PubMed  Google Scholar 

  2. Breer H (2003) Olfactory receptors: molecular basis for recognition and discrimination of odors. Anal Bioanal Chem 377(3):427–433

    CAS  PubMed  Google Scholar 

  3. Lee SH, Park TH (2010) Recent advances in the development of bioelectronic nose. Biotechnol Bioproc E 15(1):22–29

    CAS  Google Scholar 

  4. Kim TH, Lee SH, Lee J, Song HS, Oh EH, Park TH, Hong S (2009) Single-carbon-atomic-resolution detection of odorant molecules using a human olfactory receptor-based bioelectronic nose. Adv Mater 21(1):91–94

    CAS  Google Scholar 

  5. Yoon H, Lee SH, Kwon OS, Song HS, Oh EH, Park TH, Jang J (2009) Polypyrrole nanotubes conjugated with human olfactory receptors: high-performance transducers for FET-type bioelectronic noses. Angew Chem Int Edit 48(15):2755–2758

    CAS  Google Scholar 

  6. Goldsmith BR, Mitala JJ, Josue J, Castro A, Lerner MB, Bayburt TH, Khamis SM, Jones RA, Brand JG, Sligar SG, Luetje CW, Gelperin A, Rhodes PA, Discher BM, Johnson ATC (2011) Biomimetic chemical sensors using nanoelectronic readout of olfactory receptor proteins. ACS Nano 5(7):5408–5416

    CAS  PubMed  Google Scholar 

  7. Wysocki CJ, Preti G (2000) Human body odors and their perception. Jpn J Taste Smell Res 7(1):12–42

    Google Scholar 

  8. Lettéron P, Duchatelle V, Berson A, Fromenty B, Fisch C, Degott C, Benhamou JP, Pessayre D (1993) Increased ethane exhalation, an in vivo index of lipid peroxidation, in alcohol-abusers. Gut 34(3):409–414

    PubMed Central  PubMed  Google Scholar 

  9. Hanazawa T, Kharitonov S, Barnes P (2000) Increased nitrotyrosine in exhaled breath condensate of patients with asthma. Am J Respir Crit Care Med 162(4):1273–1276

    CAS  PubMed  Google Scholar 

  10. Dohlman AW, Black HR, Royall JA (1993) Expired breath hydrogen peroxide is a marker of acute airway inflammation in pediatric patients with asthma. Am Rev Respir Dis 148(4_pt_1):955–960

    CAS  PubMed  Google Scholar 

  11. Montuschi P, Barnes PJ (2002) Exhaled leukotrienes and prostaglandins in asthma. J Allergy Clin Immun 109(4):615–620

    CAS  PubMed  Google Scholar 

  12. Phillips M, Cataneo RN, Ditkoff BA, Fisher P, Greenberg J, Gunawardena R, Kwon CS, Rahbari-Oskoui F, Wong C (2003) Volatile markers of breast cancer in the breath. Breast J 9(3):184–191

    PubMed  Google Scholar 

  13. Montuschi P, Kharitonov SA, Ciabattoni G, Corradi M, van Rensen L, Geddes DM, Hodson ME, Barnes PJ (2000) Exhaled 8-isoprostane as a new non-invasive biomarker of oxidative stress in cystic fibrosis. Thorax 55(3):205–209

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Bodini A, D’Orazio C, Peroni D, Corradi M, Folesani G, Baraldi E, Assael BM, Boner A, Piacentini GL (2005) Biomarkers of neutrophilic inflammation in exhaled air of cystic fibrosis children with bacterial airway infections. Pediatr Pulm 40(6):494–499

    Google Scholar 

  15. Lundberg JO, Nordvall SL, Weitzberg E, Kollberg H, Alving K (1996) Exhaled nitric oxide in paediatric asthma and cystic fibrosis. Arch Dis Child 75(4):323–326

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Nelson N, Lagesson V, Nosratabadi AR, Ludvigsson J, Tagesson C (1998) Exhaled isoprene and acetone in newborn infants and in children with diabetes mellitus. Pediatr Res 44(3):363–367

    CAS  PubMed  Google Scholar 

  17. Xue R, Dong L, Zhang S, Deng C, Liu T, Wang J, Shen X (2008) Investigation of volatile biomarkers in liver cancer blood using solid-phase microextraction and gas chromatography/mass spectrometry. Rapid Commun Mass Sp 22(8):1181–1186

    CAS  Google Scholar 

  18. Gordon SM, Szidon JP, Krotoszynski BK, Gibbons RD, O’Neill HJ (1985) Volatile organic compounds in exhaled air from patients with lung cancer. Clin Chem 31(8):1278–1282

    CAS  PubMed  Google Scholar 

  19. Phillips M, Cataneo RN, Cummin ARC, Gagliardi AJ, Gleeson K, Greenberg J, Maxfield RA, Rom WN (2003) Detection of lung cancer with volatile markers in the breath. Chest 123(6):2115–2123

    CAS  PubMed  Google Scholar 

  20. Pavlou AK, Turner APF (2000) Sniffing out the truth: clinical diagnosis using the electronic nose. Clin Chem Lab Med 38(2):75–186

    Google Scholar 

  21. Sylvester K, Patey R, Rafferty G, Rees D, Thein S, Greenough A (2005) Exhaled carbon monoxide levels in children with sickle cell disease. Eur J Pediatr 164(3):162–165

    CAS  PubMed  Google Scholar 

  22. Carpagnano GE, Kharitonov SA, Resta O, Foschino-Barbaro MP, Gramiccioni E, Barnes PJ (2002) Increased 8-isoprostane and interleukin-6 in breath condensate of obstructive sleep apnea patients. Chest 122(4):1162–1167

    CAS  PubMed  Google Scholar 

  23. Hayden GF (1980) Olfactory diagnosis in medicine. Postgrad Med 64(4):110–115

    Google Scholar 

  24. Simenhoff ML, Burke JF, Saukkonen JJ, Ordinario AT, Doty R, Dunn S (1977) Biochemical profile of uremic breath. N Engl J Med 297(3):132–135

    CAS  PubMed  Google Scholar 

  25. Smith K, Sines JO (1960) Demonstration of a peculiar odor in the sweat of schizophrenic patients. AMA Arch Gen Psychiatry 2(2):184–188

    CAS  PubMed  Google Scholar 

  26. Smith K, Thompson GF, Koster HD (1969) Sweat in schizophrenic patients: identification of the odorous substance. Science 166(3903):398–399

    CAS  PubMed  Google Scholar 

  27. Phillips M, Sabas M, Greenberg J (1993) Increased pentane and carbon disulfide in the breath of patients with schizophrenia. J Clin Pathol 46(9):861–864

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Humad S, Zarling E, Clapper M, Skosey JL (1988) Breath pentane excretion as a marker of disease activity in rheumatoid arthritis. Free Radical Res 5(2):101–106

    CAS  Google Scholar 

  29. Goldberg EM, Blendis LM, Sandler S (1981) A gas chromatographic-mass spectrometric study of profiles of volatile metabolites in hepatic encephalopathy. J Chromatogr-Biomed 226(2):291–299

    CAS  Google Scholar 

  30. Smith M, Simith L, Levinson B (1982) The use of smell in differential diagnosis. The Lancet 2(8313):1452–1453

    CAS  Google Scholar 

  31. Liddell K (1976) Smell as a diagnostic marker. Postgrad Med J 52(605):136–138

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Vockley J, Ensenauer R (2006) Isovaleric acidemia: new aspects of genetic and phenotypic heterogeneity. Am J Med Genet C Semin Med Genet 142C(2):95–103

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Pavlou AK, Magan N, McNulty C, Jones JM, Sharp D, Brown J, Turner APF (2002) Use of an electronic nose system for diagnoses of urinary tract infections. Biosens Bioelectron 17(10):893–899

    CAS  PubMed  Google Scholar 

  34. Guernion N, Ratcliffe Norman M, Spencer-Phillips Peter TN, Howe Robin A (2001) Identifying bacteria in human urine: current practice and the potential for rapid, near-patient diagnosis by sensing volatile organic compounds. Clin Chem Lab Med 39(10):893–906

    CAS  PubMed  Google Scholar 

  35. Najarian JS (1980) The diagnostic importance of the odor of urine. N Engl J Med 303(19):1128

    CAS  PubMed  Google Scholar 

  36. Ma W, Liu X, Pawliszyn J (2006) Analysis of human breath with micro extraction techniques and continuous monitoring of carbon dioxide concentration. Anal Bioanal Chem 385(8):1398–1408

    CAS  PubMed  Google Scholar 

  37. Caspary W (1978) Breath tests. Clin Gastroenterol 7(2):351–374

    CAS  PubMed  Google Scholar 

  38. Watson JT (1998) A historical perspective and commentary on pioneering developments in gas chromatography/mass spectrometry at MIT. J Mass Spectrom 33(2):103–108

    CAS  PubMed  Google Scholar 

  39. Kharitonov S, Barnes P (2001) Exhaled markers of pulmonary disease. Am J Respir Crit Care Med 163(7):1693–1722

    CAS  PubMed  Google Scholar 

  40. Studer SM, Orens JB, Rosas I, Krishnan JA, Cope KA, Yang S, Conte JV, Becker PB, Risby TH (2001) Patterns and significance of exhaled-breath biomarkers in lung transplant recipients with acute allograft rejection. J Heart Lung Transpl 20(11):1158–1166

    CAS  Google Scholar 

  41. Miekisch W, Schubert JK, Noeldge-Schomburg GFE (2004) Diagnostic potential of breath analysis-focus on volatile organic compounds. Clin Chim Acta 347(1–2):25–39

    CAS  PubMed  Google Scholar 

  42. Zolotov YA (2005) Breath Analysis. J Anal Chem 60(6):497–497

    CAS  Google Scholar 

  43. Persaud K, Dodd G (1982) Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature 299(5881):352–355

    CAS  PubMed  Google Scholar 

  44. Thaler ER, Hanson CW (2005) Medical applications of electronic nose technology. Expert Rev Med Devices 2(5):559–566

    PubMed  Google Scholar 

  45. D’Amico A, Pennazza G, Santonico M, Martinelli E, Roscioni C, Galluccio G, Paolesse R, Di Natale C (2010) An investigation on electronic nose diagnosis of lung cancer. Lung Cancer 68(2):170–176

    PubMed  Google Scholar 

  46. Di Natale C, Macagnano A, Martinelli E, Paolesse R, D’Arcangelo G, Roscioni C, Finazzi-Agrò A, D’Amico A (2003) Lung cancer identification by the analysis of breath by means of an array of non-selective gas sensors. Biosens Bioelectron 18(10):1209–1218

    CAS  PubMed  Google Scholar 

  47. Dragonieri S, Annema JT, Schot R, van der Schee MPC, Spanevello A, Carratú P, Resta O, Rabe KF, Sterk PJ (2009) An electronic nose in the discrimination of patients with non-small cell lung cancer and COPD. Lung Cancer 64(2):166–170

    PubMed  Google Scholar 

  48. Peng G, Tisch U, Adams O, Kakim M, Shehada N, Broza YY, Billan S, Abdah-Bortnyak R, Kuten A, Haick H (2009) Diagnosing lung cance in exhaled breath using gold nanoparticles. Nat Nanotechnol 4:669–673

    CAS  PubMed  Google Scholar 

  49. Fens N, Zwinderman AH, van der Schee MP, de Nijs SB, Dijkers E, Roldaan AC, Cheung D, Bel EH, Sterk PJ (2009) Exhaled breath profiling enables discrimination of chronic obstructive pulmonary disease and asthma. Am J Respir Crit Care Med 180(11):1076–1082

    CAS  PubMed  Google Scholar 

  50. Dragonieri S, Schot R, Mertens BJA, Le Cessie S, Gauw SA, Spanevello A, Resta O, Willard NP, Vink TJ, Rabe KF, Bel EH, Sterk PJ (2007) An electronic nose in the discrimination of patients with asthma and controls. J Allergy Clin Immun 120(4):856–862

    PubMed  Google Scholar 

  51. Peng G, Tisch U, Adams O, Hakim M, Shehada N, Broza YY, Billan S, Abdah-Bortnyak R, Kuten A, Haick H (2009) Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat Nanotechnol 4(10):669–673

    CAS  PubMed  Google Scholar 

  52. Lin Y-J, Guo H-R, Chang Y-H, Kao M-T, Wang H-H, Hong R-I (2001) Application of the electronic nose for uremia diagnosis. Sensor Actuat B-Chem 76(1-3):177–180

    CAS  Google Scholar 

  53. Lim JH, Park J, Oh EH, Ko HJ, Hong S, Park TH (2013) Nanovesicle-based bioelectronic nose for the diagnosis of lung cancer from human blood. Adv Healthc Mater. doi: 10.1002/adhm.201300174

    Google Scholar 

  54. Li N, Deng C, Yin X, Yao N, Shen X, Zhang X (2005) Gas chromatography-mass spectrometric analysis of hexanal and heptanal in human blood by headspace single-drop microextraction with droplet derivatization. Anal Biochem 342(2):318–326

    CAS  PubMed  Google Scholar 

  55. Kwon OS, Ahn SR, Park SJ, Song HS, Lee SH, Lee JS, Hong J-Y, Lee JS, You SA, Yoon H, Park TH, Jang J (2012) Ultrasensitive and selective recognition of peptide hormone using close-packed arrays of hPTHR-conjugated polymer nanoparticles. ACS Nano 6(6):5549–5558

    CAS  PubMed  Google Scholar 

  56. Kim B, Song HS, Jin HJ, Park EJ, Lee SH, Lee BY, Park TH, Hong S (2013) Highly selective and sensitive detection of neurotransmitters using receptor-modified single-walled carbon nanotube sensors. Nanotechnology 24(28):285501

    PubMed  Google Scholar 

  57. Kim YD, Morr CV (1996) Dynamic headspace analysis of light activated flavor in milk. Int Dairy J 6(2):185–193

    CAS  Google Scholar 

  58. Hu M, McClements DJ, Decker EA (2003) Lipid oxidation in corn oil-in-water emulsions stabilized by casein, whey protein isolate, and soy protein isolate. J Agric Food Chem 51(6):1696–1700

    CAS  PubMed  Google Scholar 

  59. Gardner HW (1989) Oxygen radical chemistry of polyunsaturated fatty acids. Free Radical Bio Med 7(1):65–86

    CAS  Google Scholar 

  60. Prosen H, Zupančič-Kralj L (1999) Solid-phase microextraction. TrAC-Trend Anal Chem 18(4):272–282

    CAS  Google Scholar 

  61. Heikes DL, Jensen SR, Fleming-Jones ME (1995) Purge and trap extraction with GC-MS determination of volatile organic compounds in table-ready foods. J Agric Food Chem 43(11):2869–2875

    CAS  Google Scholar 

  62. Xu Y, Cheung W, Winder C, Goodacre R (2010) VOC-based metabolic profiling for food spoilage detection with the application to detecting Salmonella typhimurium-contaminated pork. Anal Bioanal Chem 397(6):2439–2449

    CAS  PubMed  Google Scholar 

  63. Bhattacharjee P, Panigrahi S, Lin D, Logue CM, Sherwood JS, Doetkott C, Marchello M (2011) A comparative qualitative study of the profile of volatile organic compounds associated with Salmonella contamination of packaged aged and fresh beef by HS-SPME/GC-MS. J Food Sci Tech 48(1):1–13

    CAS  Google Scholar 

  64. Lazarus SA, Adamson GE, Hammerstone JF, Schmitz HH (1999) High-performance liquid chromatography/mass spectrometry analysis of proanthocyanidins in foods and beverages. J Agric Food Chem 47(9):3693–3701

    CAS  PubMed  Google Scholar 

  65. Merken HM, Beecher GR (2000) Measurement of food flavonoids by high-performance liquid chromatography: a review. J Agric Food Chem 48(3):577–599

    CAS  PubMed  Google Scholar 

  66. Hernández-Jover T, Izquierdo-Pulido M, Veciana-Nogués MT, Vidal-Carou MC (1996) Ion-pair high-performance liquid chromatographic determination of biogenic amines in meat and meat products. J Agric Food Chem 44(9):2710–2715

    Google Scholar 

  67. Capone S, Epifani M, Quaranta F, Siciliano P, Taurino A, Vasanelli L (2001) Monitoring of rancidity of milk by means of an electronic nose and a dynamic PCA analysis. Sensor Actuat B-Chem 78(1–3):174–179

    CAS  Google Scholar 

  68. Gardner JW, Shurmer HV, Tan TT (1992) Application of an electronic nose to the discrimination of coffees. Sensor Actuat B-Chem 6(1-3):71–75

    CAS  Google Scholar 

  69. Schaller E, Bosset JO, Escher F (1998) ‘Electronic noses’ and their application to food. LWT-Food Sci Technol 31(4):305–316

    CAS  Google Scholar 

  70. Di Natale C, Macagnano A, Davide F, D’Amico A, Paolesse R, Boschi T, Faccio M, Ferri G (1997) An electronic nose for food analysis. Sensor Actuat B-Chem 44(1–3):521–526

    CAS  Google Scholar 

  71. Shahidi F, Pegg RB (1994) Hexanal as an indicator of meat flavor deterioration. J Food Lipids 1(3):177–186

    CAS  Google Scholar 

  72. Park J, Lim JH, Jin HJ, Namgung S, Lee SH, Park TH, Hong S (2012) A bioelectronic sensor based on canine olfactory nanovesicle-carbon nanotube hybrid structures for the fast assessment of food quality. Analyst 137(14):3249–3254

    CAS  PubMed  Google Scholar 

  73. Lim JH, Park J, Ahn JH, Jin HJ, Hong S, Park TH (2013) A peptide receptor-based bioelectronic nose for the real-time determination of seafood quality. Biosens Bioelectron 39(1):244–249

    CAS  PubMed  Google Scholar 

  74. Mondello L, Casilli A, Tranchida PQ, Dugo G, Dugo P (2005) Comprehensive two-dimensional gas chromatography in combination with rapid scanning quadrupole mass spectrometry in perfume analysis. J Chromatogr A 1067(1–2):235–243

    CAS  PubMed  Google Scholar 

  75. Asten AV (2002) The importance of GC and GC-MS in perfume analysis. TrAC-Trend Anal Chem 21(9–10):698–708

    Google Scholar 

  76. Carrasco A, Saby C, Bernadet P (1998) Discrimination of Yves Saint Laurent perfumes by an electronic nose. Flavour Frag J 13(5):335–348

    CAS  Google Scholar 

  77. Branca A, Simonian P, Ferrante M, Novas E, Negri RMn (2003) Electronic nose based discrimination of a perfumery compound in a fragrance. Sensor Actuat B-Chem 92(1–2):222–227

    CAS  Google Scholar 

  78. Lee SH, Kwon OS, Song HS, Park SJ, Sung JH, Jang J, Park TH (2012) Mimicking the human smell sensing mechanism with an artificial nose platform. Biomaterials 33(6):1722–1729

    CAS  PubMed  Google Scholar 

  79. Brown RH, Purnell CJ (1979) Collection and analysis of trace organic vapour pollutants in ambient atmospheres: The performace of a Tenax-GC adsorbent tube. J Chromatogr A 178(1):79–90

    CAS  Google Scholar 

  80. Albaigés J, Albrecht P (1979) Fingerprinting marine pollutant hydrocarbons by computerized gas chromatography-mass spectrometry. Int J Environ An Ch 6(2):171–190

    Google Scholar 

  81. Pellizzari E, Bunch J, Berkley R, McRae J (1976) Determination of trace hazardous organic vapor pollutants in ambient atmospheres by gas chromatography/mass spectrometry/computer. Anal Chem 48(6):803–807

    CAS  PubMed  Google Scholar 

  82. Noroozian E, Maris FA, Nielen MWF, Frei RW, de Jong GJ, Brinkman UA Th (1987) Liquid chromatographic trace enrichment with on-line capillary gas chromatography for the determination of organic pollutants in aqueous samples. J High Res Chromatog 10(1):17–24

    CAS  Google Scholar 

  83. de Almeida Azevedo D, Lacorte S, Vinhas T, Viana P, Barceló D (2000) Monitoring of priority pesticides and other organic pollutants in river water from Portugal by gas chromatography-mass spectrometry and liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J Chromatogr A 879(1):13–26

    CAS  PubMed  Google Scholar 

  84. Rodil R, Quintana JB, López-Mahía P, Muniategui-Lorenzo S, Prada-Rodríguez D (2009) Multi-residue analytical method for the determination of emerging pollutants in water by solid-phase extraction and liquid chromatography-tandem mass spectrometry. J Chromatogr A 1216(14):2958–2969

    CAS  PubMed  Google Scholar 

  85. Ryan MA, Shevade AV, Zhou H, Homer ML (2004) Polymer-carbon black composite sensors in an electronic nose for air-quality monitoring. MRS Bull 29(10):714–719

    CAS  PubMed  Google Scholar 

  86. Gardner JW, Shin HW, Hines EL, Dow CS (2000) An electronic nose system for monitoring the quality of potable water. Sensor Actuat B-Chem 69(3):336–341

    CAS  Google Scholar 

  87. Goschnick J, Koronczi I, Frietsch M, Kiselev I (2005) Water pollution recognition with the electronic nose KAMINA. Sensor Actuat B-Chem 106(1):182–186

    CAS  Google Scholar 

  88. De Vito S, Massera E, Piga M, Martinotto L, Di Francia G (2008) On field calibration of an electronic nose for benzene estimation in an urban pollution monitoring scenario. Sensor Actuat B-Chem 129(2):750–757

    CAS  Google Scholar 

  89. Zampolli S, Elmi I, Ahmed F, Passini M, Cardinali GC, Nicoletti S, Dori L (2004) An electronic nose based on solid state sensor arrays for low-cost indoor air quality monitoring applications. Sensor Actuat B-Chem 101(1-2):39–46

    CAS  Google Scholar 

  90. Wu T-Z, Lo Y-R (2000) Synthetic peptide mimicking of binding sites on olfactory receptor protein for use in ‘electronic nose’. J Biotechnol 80(1):63–73

    CAS  PubMed  Google Scholar 

  91. Wu T-Z (1999) A piezoelectric biosensor as an olfactory receptor for odour detection: electronic nose. Biosens Bioelectron 14(1):9–18

    CAS  PubMed  Google Scholar 

  92. O’Mahony M (1986) Sensory adaptation. J Sens Stud 1(3–4):237–258

    Google Scholar 

  93. Kaeppler K, Mueller F (2013) Odor classification: a review of factors influencing perception-based odor arrangements. Chem Senses 38:189–209

    PubMed  Google Scholar 

  94. Henning H (1916) Der Geruch. Verlag von Johann Ambrosius Barth, Leipzig

    Google Scholar 

  95. Dyson GM (1938) The scientific basis of odour. J Soc Chem Ind 57:647–651

    Google Scholar 

  96. Wright RH, Serenius RSE (1954) Odour and molecular vibration. II. Raman spectra of substances with the nitrobenzene odour. J Appl Chem 4:615–621

    CAS  Google Scholar 

  97. Schiffman SS (1974) Physicochemical correlates of olfactory quality. Science 185:112–117

    CAS  PubMed  Google Scholar 

  98. Amoore JE (1963) Stereochemical theory of olfaction. Nature 199:912–913

    CAS  PubMed  Google Scholar 

  99. Brower KR, Schafer R (1975) The recognition of chemical types by odor. The effect of steric hindrance at the functional group. J Chem Educ 52:538–540

    CAS  Google Scholar 

  100. Amoore JE (1977) Specific anosmia and the concept of primary odors. Chem Senses 2:267–281

    CAS  Google Scholar 

  101. Cain WS (1970) Odor intensity after self-adaptation and cross-adaptation. Percept Psychophys 7:271–275

    Google Scholar 

  102. Todrank J, Wysocki CJ, Beauchamp GK (1991) The effects of adaptation on the perception of similar and dissimilar odors. Chem Senses 16:467–482

    CAS  Google Scholar 

  103. Pierce JD Jr, Zeng XN, Aronov EV, Preti G, Wysocki CJ (1995) Cross-adaptation of sweaty-smelling 3-methyl-2-hexenoic acid by a structually-similar, pleasant-smelling odorant. Chem Senses 20:401–411

    CAS  PubMed  Google Scholar 

  104. Malnic B (2004) The human olfactory receptor gene family. Proc Natl Acad Sci U S A 101:2584–2589

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Figueroa XA, Cooksey GA, Votaw SV, Horowitz LF, Folch A (2010) Large-scale investigation of the olfactory receptor space using a microfluidic microwell array. Lab Chip 10(9):1120–1127

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Redmond TM, Ren X, Kubish G, Atkins S, Low S, Uhler MD (2004) Microarray transfection analysis of transcriptional regulation by cAMP-dependent protein kinase. Mole Cell Proteomics 3(8):770–779

    CAS  Google Scholar 

  107. Saito H, Chi Q, Zhuang H, Matsunami H, Mainland JD (2009) Odor coding by a mammalian receptor repertoire. Sci Signal 2(60):ra9

    PubMed Central  PubMed  Google Scholar 

  108. Dacres H, Wang J, Leitch V, Horne I, Anderson AR, Trowell SC (2011) Greatly enhanced detection of a volatile ligand at femtomolar levels using bioluminescence resonance energy transfer (BRET). Biosens Bioelectron 29(1):119–124

    CAS  PubMed  Google Scholar 

  109. Oh EH, Lee SH, Lee SH, Ko HJ, Park TH (2014) Cell-based high-throughput odorant screening system through visualization on a microwell array. Biosens Bioelectron 53:18–25

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science, ICT & Future Planning (No. 2013003890, No. 2013K000368) and the Ministry of Education (No. 2013011174).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tai Hyun Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ko, H., Lim, J., Oh, E., Park, T. (2014). Applications and Perspectives of Bioelectronic Nose. In: Park, T. (eds) Bioelectronic Nose. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8613-3_14

Download citation

Publish with us

Policies and ethics