Skip to main content

Conducting Polymer Nanomaterial-Based Sensor Platform for Bioelectronic Nose

  • Chapter
  • First Online:
Bioelectronic Nose
  • 1238 Accesses

Abstract

Significant efforts in the fabrication of conducting polymer (CP) nanomaterials have enabled various electronic devices such as solar cells, memory devices, batteries, and field-effect transistors (FETs). Specifically, well-designed one-dimensional (1D) CP nanostructures have gained attention in various biosensing applications due to their 1D geometry, which can facilitate efficient charge-transfer behavior and signal amplification. Recently, researchers have demonstrated various nanomaterial-based odorant sensing geometries with sensitivity and selectivity. Although these conventional odorant sensing platforms provide significant and sensitive performance, limitations such as low sensitivity, slow response time, and an unstable platform in the liquid state remain as challenges. Herein, we developed a novel fabrication process for functionalized 1D CP nanomaterials, conjugated with human olfactory receptors (hORs), a so-called “bioelectronic nose” (B-nose), through an immobilization process. The sensing platforms using 1D CP nanomaterials were integrated into a liquid-ion gated FET system, resulting in the development of a high-performance FET-type B-nose. Real-time responses from the B-nose were monitored with ultrasensitive and selective responses at unprecedentedly low concentrations of the target odorant. The B-nose also showed single-atom-resolution for target odorants among similar non-target odorants. Moreover, the 1D CP nanomaterial-based B-nose can discriminate target odorants in the gaseous state, with sensing capability comparable to that of a human expert’s nose. The B-nose opens the possibility for efficient methodology for smell mechanism studies. Based on these results, the study of the B-nose using 1D CP nanomaterials opens up challenging research opportunities including these related to the food industry, disease diagnosis, and public safety.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baş M, Yüksel M, Çavuşoğlu T (2007) Difficulties and barriers for the implementing of HACCP and food safety systems in food businesses in Turkey. Food Control 18(2):124–130

    Article  Google Scholar 

  2. Henson S, Caswell J (1999) Food safety regulation: an overview of contemporary issues. Food Policy 24(6):589–603

    Article  Google Scholar 

  3. Safety M (2011) Health administration. Approval & Certification Center

    Google Scholar 

  4. Yong-hua Y (2009) Observation on law system of food safety in west and its enlightenments to us [J]. Gansu Theory Res 2:030

    Google Scholar 

  5. Lill M, Dobler M, Vedani A (2005) In silico prediction of receptor-mediated environmental toxic phenomena-application to endocrine disruption. SAR QSAR Environ Res 16(1–2):149–169

    Article  CAS  PubMed  Google Scholar 

  6. Osburn WO, Kensler TW (2008) Nrf2 signaling: an adaptive response pathway for protection against environmental toxic insults. Mutat Res 659(1):31–39

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Tombelli S, Minunni M, Mascini M (2007) Aptamers-based assays for diagnostics, environmental and food analysis. Biomol Eng 24(2):191–200

    CAS  PubMed  Google Scholar 

  8. Tsow F, Forzani E, Rai A, Wang R, Tsui R, Mastroianni S, Knobbe C, Gandolfi AJ, Tao N (2009) A wearable and wireless sensor system for real-time monitoring of toxic environmental volatile organic compounds. IEEE Sens J 9(12):1734–1740

    Article  CAS  Google Scholar 

  9. Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos M (2006) Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol Environ Saf 64(2):178–189

    Article  CAS  PubMed  Google Scholar 

  10. He J-L, Yang Y-F, Shen G-L, Yu R-Q (2011) Electrochemical aptameric sensor based on the Klenow fragment polymerase reaction for cocaine detection. Biosens Bioelectron 26(10):4222–4226

    Article  CAS  PubMed  Google Scholar 

  11. Liao Y-H, Chou J-C (2008) Drift and hysteresis characteristics of drug sensors based on ruthenium dioxide membrane. Sensors 8(9):5386–5396

    Article  CAS  PubMed Central  Google Scholar 

  12. Yagiuda K, Hemmi A, Ito S, Asano Y, Fushinuki Y, Chen C-Y, Karube I (1996) Development of a conductivity-based immunosensor for sensitive detection of methamphetamine (stimulant drug) in human urine. Biosens Bioelectron 11(8):703–707

    Article  CAS  PubMed  Google Scholar 

  13. Cynkar W, Dambergs R, Smith P, Cozzolino D (2010) Classification of Tempranillo wines according to geographic origin: combination of mass spectrometry based electronic nose and chemometrics. Anal Chim Acta 660(1):227–231

    Article  CAS  PubMed  Google Scholar 

  14. Vinaixa M, Marín S, Brezmes J, Llobet E, Vilanova X, Correig X, Ramos A, Sanchis V (2004) Early detection of fungal growth in bakery products by use of an electronic nose based on mass spectrometry. J Agric Food Chem 52(20):6068–6074

    Article  CAS  PubMed  Google Scholar 

  15. Olsson J, Börjesson T, Lundstedt T, Schnürer J (2002) Detection and quantification of ochratoxin A and deoxynivalenol in barley grains by GC-MS and electronic nose. Int J Food Microbiol 72(3):203–214

    Article  CAS  PubMed  Google Scholar 

  16. Farkas J, Dalmadi I (2009) Near infrared and fluorescence spectroscopic methods and electronic nose technology for monitoring foods. Prog Agric Eng Sci 5(1):1–29

    Google Scholar 

  17. Baller M, Lang H, Fritz J, Gerber C, Gimzewski J, Drechsler U, Rothuizen H, Despont M, Vettiger P, Battiston F (2000) A cantilever array-based artificial nose. Ultramicroscopy 82(1):1–9

    Article  CAS  PubMed  Google Scholar 

  18. Chandiok S, Crawley B, Oppenheim B, Chadwick P, Higgins S, Persaud K (1997) Screening for bacterial vaginosis: a novel application of artificial nose technology. J Clin Pathol 50(9):790–791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Dickinson TA, Michael KL, Kauer JS, Walt DR (1999) Convergent, self-encoded bead sensor arrays in the design of an artificial nose. Anal Chem 71(11):2192–2198

    Article  CAS  PubMed  Google Scholar 

  20. Lang H, Baller M, Berger R, Gerber C, Gimzewski J, Battiston F, Fornaro P, Ramseyer J, Meyer E, Güntherodt H (1999) An artificial nose based on a micromechanical cantilever array. Anal Chim Acta 393(1):59–65

    Article  CAS  Google Scholar 

  21. Lang H, Ramseyer J, Grange W, Braun T, Schmid D, Hunziker P, Jung C, Hegner M, Gerber C (2007) An artificial nose based on microcantilever array sensors. J Phys: Conf Ser :663 (IOP Publishing)

    Google Scholar 

  22. Persaud K, Pelosi P (1985) An approach to an artificial nose. ASAIO J 31(1):297–300

    CAS  Google Scholar 

  23. White J, Dickinson TA, Walt DR, Kauer JS (1998) An olfactory neuronal network for vapor recognition in an artificial nose. Biol Cybern 78(4):245–251

    Article  CAS  PubMed  Google Scholar 

  24. Fernández DG, Blanco A, Durán A, Jiménez-Jorquera C, Arias-de Fuentes O (2013) Portable measurement system for FET type microsensors based on PSoC microcontroller. J Phys: Conf Series :012015 (IOP Publishing)

    Google Scholar 

  25. Li L, Gao P, Baumgarten M, Müllen K, Lu N, Fuchs H, Chi L (2013) High performance field‐effect ammonia sensors based on a structured ultrathin organic semiconductor film. Adv Mater 25(25):3419–3425

    Article  CAS  PubMed  Google Scholar 

  26. Chang C-T, Huang C-Y, Li Y-R, Cheng H-C (2013) Effect of arrangement of carbon nanotube pillars on its gas ionization characteristics. Sens Actuators A: Phys 195(1):60–63

    Article  CAS  Google Scholar 

  27. Koleini M, Ciacchi LC (2013) Label-free molecular detection with capped carbon nanotubes. Appl Phys Lett 102:083103

    Article  Google Scholar 

  28. Huang Y, Shi M, Hu K, Zhao S, Lu X, Chen Z-F, Chen J, Liang H (2013) Carbon nanotube-based multicolor fluorescent peptide probes for highly sensitive multiplex detection of cancer-related proteases. J Mater Chem B 1:3470–3476

    Article  CAS  Google Scholar 

  29. Wang K, Qian X, Zhang L, Li Y, Liu H (2013) Inorganic-organic pn heterojunction nanotree arrays for high sensitive diode humidity sensor. ACS Appl Mater Interfaces 5(12):5825–5831

    Article  CAS  PubMed  Google Scholar 

  30. Yang L, Wang S, Zeng Q, Zhang Z, Peng LM (2013) Carbon nanotube photoelectronic and photovoltaic devices and their applications in infrared detection. Small 9(8):1225–1236

    Article  CAS  PubMed  Google Scholar 

  31. Kwon OS, Park SJ, Lee JS, Park E, Kim T, Park H-W, You SA, Yoon H, Jang J (2012) Multidimensional conducting polymer nanotubes for ultrasensitive chemical nerve agent sensing. Nano Lett 12(6):2797–2802

    Article  CAS  PubMed  Google Scholar 

  32. Lee SH, Kwon OS, Song HS, Park SJ, Sung JH, Jang J, Park TH (2012) Mimicking the human smell sensing mechanism with an artificial nose platform. Biomaterials 33(6):1722–1729

    Article  CAS  PubMed  Google Scholar 

  33. Song HS, Kwon OS, Lee SH, Park SJ, Kim U-K, Jang J, Park TH (2012) Human taste receptor-functionalized field effect transistor as a human-like nanobioelectronic tongue. Nano Lett 13(1):172–178

    Article  PubMed  Google Scholar 

  34. Yoon H, Lee SH, Kwon OS, Song HS, Oh EH, Park TH, Jang J (2009) Polypyrrole nanotubes conjugated with human olfactory receptors: high‐performance transducers for FET‐type bioelectronic noses. Angew Chem Int Ed Engl 48(15):2755–2758

    Article  CAS  PubMed  Google Scholar 

  35. Kim TH, Lee SH, Lee J, Song HS, Oh EH, Park TH, Hong S (2009) Single‐carbon‐atomic‐resolution detection of odorant molecules using a human olfactory receptor‐based bioelectronic nose. Adv Mater 21(1):91–94

    Article  CAS  Google Scholar 

  36. Huang J, Virji S, Weiller BH, Kaner RB (2003) Polyaniline nanofibers: facile synthesis and chemical sensors. J Am Chem Soc 125(2):314–315

    Article  CAS  PubMed  Google Scholar 

  37. Wan M (2008) A template‐free method towards conducting polymer nanostructures. Adv Mater 20(15):2926–2932

    Article  CAS  Google Scholar 

  38. Jang J, Oh JH, Stucky GD (2002) Fabrication of ultrafine conducting polymer and graphite nanoparticles. Angew Chem Int Ed Engl 41(21):4016–4019

    Article  CAS  PubMed  Google Scholar 

  39. Kwon OS, Park E, Kweon OY, Park SJ, Jang J (2010) Novel flexible chemical gas sensor based on poly (3, 4-ethylenedioxythiophene) nanotube membrane. Talanta 82(4):1338–1343

    Article  CAS  PubMed  Google Scholar 

  40. Jang J (2006) Conducting polymer nanomaterials and their applications. In: Emissive Materials Nanomaterials. ED. Kwang-Sup Lee, Springer, pp 189–260

    Google Scholar 

  41. Kwon OS, Ahn SR, Park SJ, Song HS, Lee SH, Lee JS, Hong J-Y, Lee JS, You SA, Yoon H (2012) Ultrasensitive and selective recognition of peptide hormone using close-packed arrays of hPTHR-conjugated polymer nanoparticles. ACS Nano 6(6):5549–5558

    Article  CAS  PubMed  Google Scholar 

  42. Leite E, Weber I, Longo E, Varela J (2000) A new method to control particle size and particle size distribution of SnO2 nanoparticles for gas sensor applications. Adv Mater 12(13):965–968

    Article  CAS  Google Scholar 

  43. Shipway AN, Katz E, Willner I (2000) Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem 1(1):18–52

    Article  CAS  PubMed  Google Scholar 

  44. Horrillo M, Getino J, Ares L, Robia J, Sayago I, Gutierrez F (1998) Measurements of VOCs with a semiconductor electronic nose. J Electrochem Soc 145(7):2486–2489

    Article  CAS  Google Scholar 

  45. Vazquez M, Hernando A (1996) A soft magnetic wire for sensor applications. J Phys D: Appl Phys 29(4):939–949

    Article  CAS  Google Scholar 

  46. Adhikari B, Majumdar S (2004) Polymers in sensor applications. Prog Polym Sci 29(7):699–766

    Article  CAS  Google Scholar 

  47. Dong Q, Du L, Zhuang L, Li R, Liu Q, Wang P (2013) A novel bioelectronic nose based on brain-machine interface using implanted electrode recording in vivo in olfactory bulb. Biosens Bioelectron 49(15):263–269

    Article  CAS  PubMed  Google Scholar 

  48. Kim D, Jin HJ, Lee SH, Kim TH, Park J, Song HS, Park TH, Hong S (2013) Bioelectronic device mimicking human sensory system based on nanovesicle-carbon nanotube hybrid structure. Bull Am Phys Soc, Baltimore, MD, USA, 58

    Google Scholar 

  49. Liu H, Kameoka J, Czaplewski DA, Craighead H (2004) Polymeric nanowire chemical sensor. Nano Lett 4(4):671–675

    Article  CAS  Google Scholar 

  50. Dickinson C, Davies R, Davis R (2003) Towards a free-free template for CMB foregrounds. Mon Not Roy Astron Soc 341(2):369–384

    Article  CAS  Google Scholar 

  51. Kwon OS, Park SJ, Park H-W, Kim T, Kang M, Jang J, Yoon H (2012) Kinetically controlled formation of multidimensional poly (3, 4-ethylenedioxythiophene) nanostructures in vapor-deposition polymerization. Chem Mater 24(21):4088–4092

    Article  CAS  Google Scholar 

  52. Lu X, Zhang W, Wang C, Wen T-C, Wei Y (2011) One-dimensional conducting polymer nanocomposites: Synthesis, properties and applications. Prog Polym Sci 36(5):671–712

    Article  CAS  Google Scholar 

  53. Hurst SJ, Payne EK, Qin L, Mirkin CA (2006) Multisegmented one‐dimensional nanorods prepared by hard‐template synthetic methods. Angew Chem Int Ed Engl 45(17):2672–2692

    Article  CAS  PubMed  Google Scholar 

  54. Rossinyol E, Arbiol J, Peiró F, Cornet A, Morante J, Tian B, Bo T, Zhao D (2005) Nanostructured metal oxides synthesized by hard template method for gas sensing applications. Sens Actuators B: Chem 109(1):57–63

    Article  CAS  Google Scholar 

  55. Zhang X, Zhang J, Song W, Liu Z (2006) Controllable synthesis of conducting polypyrrole nanostructures. J Phys Chem B 110(3):1158–1165

    Article  CAS  PubMed  Google Scholar 

  56. Zhang Z, Zuo F, Feng P (2010) Hard template synthesis of crystalline mesoporous anatase TiO2 for photocatalytic hydrogen evolution. J Mater Chem 20(11):2206–2212

    Article  CAS  Google Scholar 

  57. Park E, seok Kwon O, joo Park S, seop Lee J, You S, Jang J (2012) One-pot synthesis of silver nanoparticles decorated poly (3, 4-ethylenedioxythiophene) nanotubes for chemical sensor application. J Mater Chem 22(4):1521–1526

    Article  CAS  Google Scholar 

  58. Song Y, Garcia RM, Dorin RM, Wang H, Qiu Y, Coker EN, Steen WA, Miller JE, Shelnutt JA (2007) Synthesis of platinum nanowire networks using a soft template. Nano Lett 7(12):3650–3655

    Article  CAS  PubMed  Google Scholar 

  59. Wang C, Chen M, Zhu G, Lin Z (2001) A novel soft-template technique to synthesize metal Ag nanowire. J Colloid Interface Sci 243(2):362–364

    Article  CAS  Google Scholar 

  60. Wu XJ, Xu D (2010) Soft template synthesis of yolk/silica shell particles. Adv Mater 22(13):1516–1520

    Article  CAS  PubMed  Google Scholar 

  61. Yamauchi Y, Kuroda K (2008) Rational design of mesoporous metals and related nanomaterials by a soft‐template approach. Chem Asian J 3(4):664–676

    Article  CAS  PubMed  Google Scholar 

  62. Kwon OS, Hong T-J, Kim SK, Jeong J-H, Hahn J-S, Jang J (2010) Hsp90-functionalized polypyrrole nanotube FET sensor for anti-cancer agent detection. Biosens Bioelectron 25(6):1307–1312

    Article  CAS  PubMed  Google Scholar 

  63. Jang J, Yoon H (2003) Facile fabrication of polypyrrole nanotubes using reverse microcmulsion polymerization. Chem Commun (Camb) 6:720–721

    Article  Google Scholar 

  64. Pan H, Feng YP, Lin J, Liu CJ, Wee TS (2007) Catalyst-free template-synthesis of ZnO nanopetals at 60 °C. J Nanosci Nanotechnol 7(2):696–699

    Article  CAS  PubMed  Google Scholar 

  65. Wang JC, Sawadogo M, Van Dyke MW (1998) Plasmids for the in vitro analysis of RNA polymerase II-dependent transcription based on a G-free template. Biochim Biophys Acta 1397(2):141–145

    Article  CAS  PubMed  Google Scholar 

  66. Zhu C, Chen C, Hao L, Hu Y, Chen Z (2004) Template-free synthesis of Cu2Cl(OH)3 nanoribbons and use as sacrificial template for CuO nanoribbon. J Crystal Growth 263(1):473–479

    CAS  Google Scholar 

  67. Jang J, Yoon H (2005) Formation mechanism of conducting polypyrrole nanotubes in reverse micells systems. Langmuir 21(24):11484–11489

    Article  CAS  PubMed  Google Scholar 

  68. Park SJ, Kwon OS, Lee SH, Song HS, Park TH, Jang J (2012) Ultrasensitive flexible graphene based field-effect transistor (FET)-type bioelectronic nose. Nano Lett 12(10):5082–5090

    Article  CAS  PubMed  Google Scholar 

  69. Yoon H, Jang J (2009) Conducting‐polymer nanomaterials for high‐performance sensor applications: issues and challenges. Adv Funct Mater 19(10):1567–1576

    Article  CAS  Google Scholar 

  70. Chen H, He J (2008) Fine control over the morphology and structure of mesoporous silica nanomaterials by a dual-templating approach. Chem Commun (Camb) (37):4422–4424

    Google Scholar 

  71. Holmberg K (2004) Surfactant-templated nanomaterials synthesis. J Colloid Interface Sci 274(2):355–364

    Article  CAS  PubMed  Google Scholar 

  72. Kumar S, Nann T (2006) Shape control of II-VI semiconductor nanomaterials. Small 2(3):316–329

    Article  CAS  PubMed  Google Scholar 

  73. Lopez-Quintela MA (2003) Synthesis of nanomaterials in microemulsions: formation mechanisms and growth control. Curr Opin Colloid Interface Sci 8(2):137–144

    Article  CAS  Google Scholar 

  74. Bruins M, Bos A, Petit P, Eadie K, Rog A, Bos R, van Ramshorst G, van Belkum A (2009) Device-independent, real-time identification of bacterial pathogens with a metal oxide-based olfactory sensor. Eur J Clin Microbiol Infect Dis 28(7):775–780

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Lundström I, Erlandsson R, Frykman U, Hedborg E, Spetz A, Sundgren H, Welin S, Winquist F (1991) Artificial ‘olfactory’ images from a chemical sensor using a light-pulse technique. Nature 352:47–50

    Article  Google Scholar 

  76. Miwa H, Umetsu T, Takanishi A, Takanohu H (2001) Human-like robot head that has olfactory sensation and facial color expression. In: Robotics and automation. Proceedings 2001 ICRA. IEEE International Conference on, 2001. IEEE, pp 459–464

    Google Scholar 

  77. Sankaran S, Panigrahi S, Mallik S (2011) Olfactory receptor based piezoelectric biosensors for detection of alcohols related to food safety applications. Sens Actuators B: Chem 155(1):8–18

    Article  CAS  Google Scholar 

  78. Vodyanoy V (1988) Olfactory sensor. In: Engineering in medicine and biology society. Proceedings of the Annual International Conference of the IEEE, pp 997–998

    Google Scholar 

  79. Wang P, Liu Q, Xu Y, Cai H, Li Y (2007) Olfactory and taste cell sensor and its applications in biomedicine. Sens Actuators A: Phys 139(1):131–138

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyongsik Jang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kwon, O., Jang, J. (2014). Conducting Polymer Nanomaterial-Based Sensor Platform for Bioelectronic Nose. In: Park, T. (eds) Bioelectronic Nose. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8613-3_13

Download citation

Publish with us

Policies and ethics