Skip to main content

Spin-Dependent Transport of Carbon Nanotubes with Chromium Atoms

  • Conference paper
  • First Online:
Nanomaterials for Security

Abstract

This paper presents a new method of describing electronic correlations in disordered magnetic crystals based on the Hamiltonian of multi-electron system and diagram method for Green’s functions finding. Electronic states of a system were approximately described by self-consistent multi-band tight-binding model. The Hamiltonian of a system is defined on the basis of Kohn–Sham orbitals. Potentials of neutral atoms are defined by the meta-generalized gradient approximation (MGGA). Electrons scattering on the oscillations of the crystal lattice are taken into account. The proposed method includes long-range Coulomb interaction of electrons at different sites of the lattice. Precise expressions for Green’s functions, thermodynamic potential and conductivity tensor are derived using diagram method. Cluster expansion is obtained for density of states, free energy, and electrical conductivity of disordered systems. We show that contribution of the electron scattering processes to cluster expansion is decreasing along with increasing number of sites in the cluster, which depends on small parameter. The computation accuracy is determined by renormalization precision of the vertex parts of the mass operators of electron-electron and electron-phonon interactions. This accuracy also can be determined by small parameter of cluster expansion for Green’s functions of electrons and phonons. It was found the nature of spin-dependent electron transport in carbon nanotubes with chromium atoms, which are adsorbed on the surface. We show that the phenomenon of spin-dependent electron transport in a carbon nanotube was the result of strong electron correlations, caused by the presence of chromium atoms. The value of the spin polarization of electron transport is determined by the difference of the partial densities of electron states with opposite spin projection at the Fermi level. It is also determined by the difference between the relaxation times arising from different occupation numbers of single-electron states of carbon and chromium atoms. The value of the electric current spin polarization increases along with Cr atoms concentration and magnitude of the external magnetic field increase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abrikosov AA, Gorkov LP, Dzyaloshinski IE (1963) Methods of quantum field theory in statistical physics (edited by Silverman RA). Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  2. Blochl PE (1994) Phys Rev B 50:17953

    Article  ADS  Google Scholar 

  3. Chepulskii RV, Butler WH (2005) Phys Rev B 72:134205

    Article  ADS  Google Scholar 

  4. Ducastelle F (1974) J Phys C 7:1795

    Article  ADS  Google Scholar 

  5. Durgun E, Ciraci S (2006) Phys Rev B 74:125404

    Article  ADS  Google Scholar 

  6. Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim Th, Suhai S, Seifert G (1998) Phys Rev B 58:7260

    Article  ADS  Google Scholar 

  7. Enyaschin A, Gemming S, Heine T, Seifert G, Zhechkov L (2006) Phys Chem Chem Phys 8:3320

    Article  Google Scholar 

  8. Harrison WA (1966) Pseudopotentials in the theory of metals. Benjamin, New York

    Google Scholar 

  9. Ivanovskaya VV, Seifert G (2004) Solid State Commun 130:175

    Article  ADS  Google Scholar 

  10. Ivanovskaya VV, Heine T, Gemming S, Seifert G (2006) Phys Status Solidi B 243:1757

    Article  ADS  Google Scholar 

  11. Ivanovskaya VV, Köhler C, Seifert G (2007) Phys Rev B 75:075410

    Article  ADS  Google Scholar 

  12. Johnson DD, Nicholson DM, Pinski FJ, Gyorffy BL, Stocks GM (1990) Phys Rev B 41:9701

    Article  ADS  Google Scholar 

  13. Jones RO, Gunnarsson O (1989) Rev Mod Phys 61:689

    Article  ADS  Google Scholar 

  14. Köhler C, Seifert G, Gerstmann U, Elstner M, Overhof H, Frauenheim Th (2001) Phys Chem Chem Phys 3:5109

    Article  Google Scholar 

  15. Kohn W, Sham LJ (1965) Phys Rev 140:A1133

    Article  ADS  MathSciNet  Google Scholar 

  16. Kresse G, Joubert D (1999) Phys Rev B 59:1758

    Article  ADS  Google Scholar 

  17. Kruchinin SP (1995) Modern Phys Lett B 9:205–215

    ADS  Google Scholar 

  18. Kruchinin SP (2014) Rev Theor Phys 2:124–145

    Google Scholar 

  19. Kruchinin S, Nagao H, Aono S ( 2010) Modern aspects of superconductivity: theory of Superconductivity. World Scientific, Singapore, p 220

    Book  Google Scholar 

  20. Kubo R (1957) J Phys Soc Jpn 12:570

    Article  ADS  Google Scholar 

  21. Laasonen K, Car R, Lee C, Vanderbilt D (1991) Phys Rev B 43:6796

    Article  ADS  Google Scholar 

  22. Los’ VF, Repetsky SP (1994) J Phys Condens Matter 6:1707

    Google Scholar 

  23. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  ADS  Google Scholar 

  24. Perdew JP, Kurth S, Zupan A, Blaha P (1999) Phys Rev Lett 82:2544

    Article  ADS  Google Scholar 

  25. Perdew JP, Ruzsinszky A, Csonka GI, Constantin LA, Sun J (2009) Phys Rev Lett 103:026403

    Article  ADS  Google Scholar 

  26. Porezag D, Frauenheim T, Köhler T, Seifert G, Kascher R (1995) Phys Rev B 51:2947

    Article  Google Scholar 

  27. Razee SSA, Staunton JB, Ginatempo B, Bruno E, Pinski FJ (2001) J Phys: Condens Matter 13:8565

    ADS  Google Scholar 

  28. Repetsky SP, Shatnii TD (2002) Theor Math Phys 131:456

    Article  Google Scholar 

  29. Sharma RR (1979) Phys Rev B 19:2813

    Article  ADS  Google Scholar 

  30. Slater JC (1963) Quantum theory of molecules and solids: electronic structure of molecules, vol 1. McGraw-Hill, New York

    MATH  Google Scholar 

  31. Slater JC, Koster GF (1954) Phys Rev 94:1498

    Article  ADS  Google Scholar 

  32. Staunton JB, Razee SSA, Ling MF, Johnson DD, Pinski FJ (1998) J Phys D: Appl Phys 31:2355

    Article  ADS  Google Scholar 

  33. Stocks GM, Winter H (1982) Z Phys B 46:95

    Article  ADS  Google Scholar 

  34. Stocks GM, Temmerman WM, Gyorffy BL (1978) Phys Rev Lett 41:339

    Article  ADS  Google Scholar 

  35. Sun J, Marsman M, Csonka GI, Ruzsinszky A, Hao P, Kim Y-S, Kresse G, Perdew JP (2011) Phys Rev B 84:035117

    Article  ADS  Google Scholar 

  36. Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91:146401

    Article  ADS  Google Scholar 

  37. Vanderbilt D (1985) Phys Rev B 41:7892

    Article  ADS  Google Scholar 

  38. Wigner EP (1959) Group theory. Academic Press, New York/London

    MATH  Google Scholar 

  39. Yang C, Zhao J, Lu JP (2003) Phys Rev Lett 90:57203–1

    Google Scholar 

  40. Yang C, Zhao J, Lu JP (2004) Nano Lett 4:561

    Article  ADS  Google Scholar 

  41. Zubarev DN (1974) Nonequilibrium statistical thermodynamics (edited by Gray P, Shepherd PJ). Consultants Bureau, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Repetsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Kruchinin, S.P., Repetsky, S.P., Vyshyvana, I.G. (2016). Spin-Dependent Transport of Carbon Nanotubes with Chromium Atoms. In: Bonča, J., Kruchinin, S. (eds) Nanomaterials for Security. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7593-9_7

Download citation

Publish with us

Policies and ethics