Skip to main content

Strong-Coupling Diagram Technique for Strong Electron Correlations

  • Conference paper
  • First Online:
Nanomaterials for Security
  • 610 Accesses

Abstract

Using the strong coupling diagram technique a closed set of equations was derived for the electron Green’s function of the Hubbard model. Spectral functions calculated self-consistently in the two-dimensional t-U model are in qualitative and in some cases quantitative agreement with results of Monte Carlo simulations in a wide range of electron concentrations. For three different initial bands – the semi-elliptical density of states, t-U and t-t′-U models – the Mott transition occurs at very close values of the Hubbard repulsion \(U_{c} \approx \sqrt{3}\varDelta /2\), where Δ is the initial bandwidth. The behavior of the Mott gap with doping and its width at half-filling depend strongly on the value of the next-nearest hopping constant t′.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vladimir MI, Moskalenko VA (1990) Theor Math Phys 82:301

    Article  Google Scholar 

  2. Metzner W (1991) Phys Rev B 43:8549

    Article  ADS  Google Scholar 

  3. Sherman A (2006) Phys Rev B 73:155105; 74:035104 (2006)

    Google Scholar 

  4. Sherman A (2015) Physica B 456:35

    Article  ADS  Google Scholar 

  5. Hubbard J (1964) Proc R Soc Lond A 281:401

    Article  ADS  Google Scholar 

  6. Sherman A (2015) Int J Mod Phys B 29:1550088

    Article  ADS  MathSciNet  Google Scholar 

  7. Sherman A (2015) Physica Status Solidi (B). doi:10.1002/pssb.201552026

    Google Scholar 

  8. Izyumov YA, Skryabin YN (1988) Statistical mechanics of magnetically ordered systems. Consultants Bureau, New York

    Google Scholar 

  9. Gröber C, Eder R, Hanke W (2000) Phys Rev B 62:4336

    Article  ADS  Google Scholar 

  10. Gros C (1994) Phys Rev B 50:7295

    Article  ADS  Google Scholar 

  11. Sherman A, Schreiber M (2007) Phys Rev B 76:245112; 77:155117 (2008)

    Google Scholar 

  12. Hubbard J (1963) Proc R Soc Lond A 276:238; 277:237 (1964)

    Google Scholar 

  13. Varney CN et al. (2009) Phys Rev B 80:075116

    Article  ADS  Google Scholar 

  14. Haas S, Moreo A, Dagotto E (1995) Phys Rev Lett 74:4281

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the research project IUT2-27, the European Regional Development Fund TK114 and the Estonian Scientific Foundation (grant ETF-9371).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sherman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Sherman, A. (2016). Strong-Coupling Diagram Technique for Strong Electron Correlations. In: Bonča, J., Kruchinin, S. (eds) Nanomaterials for Security. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7593-9_6

Download citation

Publish with us

Policies and ethics