Skip to main content

Spin Relaxation in GaAs Based Quantum Dots for Security and Quantum Information Processing Applications

  • Conference paper
  • First Online:
Nanomaterials for Security

Abstract

We report new three-dimensional modeling results of the band structure calculation of \(\mathrm{GaAs/Al_{0.3}Ga_{0.7}As}\) quantum dots (QDs) in presence of externally applied magnetic and electric fields along z-direction. We explore the influence of spin-orbit coupling in the effective g-factor of electrons in such QDs for possible application in security devices, encrypted data and quantum information processing. We estimate the relaxation rate in QDs caused by piezo-phonons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bulaev DV, Loss D (2005) Spin relaxation and decoherence of holes in quantum dots. Phys Rev Lett 95:076805

    Article  ADS  Google Scholar 

  2. Bulaev DV, Loss D (2005) Spin relaxation and anticrossing in quantum dots: Rashba versus dresselhaus spin-orbit coupling. Phys Rev B 71:205324

    Article  ADS  Google Scholar 

  3. Bychkov YA, Rashba EI (1984) Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J Phys C: Solid State Phys 17:6039

    Article  ADS  Google Scholar 

  4. Comsol Multiphysics version 5.1. www.comsol.com

  5. Dresselhaus G (1955) Spin-orbit coupling effects in zinc blende structures. Phys Rev 100:580

    Article  ADS  MATH  Google Scholar 

  6. Elzerman JM, Hanson R, Willems van Beveren LH, Witkamp B, Vandersypen LMK, Kouwenhoven LP (2004) Single-shot read-out of an individual electron spin in a quantum dot. Nature 430:431

    Article  ADS  Google Scholar 

  7. Golovach VN, Khaetskii A, Loss D (2004) Phonon-induced decay of the electron spin in quantum dots. Phys Rev Lett 93:016601

    Article  ADS  Google Scholar 

  8. Jiang HW, Yablonovitch E (2001) Gate-controlled electron spin resonance in \(\mathrm{G}\mathrm{a}\mathrm{A}\mathrm{s}/\mathrm{A}\mathrm{l}_{x}\mathrm{Ga}_{1-x}\mathrm{As}\) heterostructures. Phys Rev B 64:041307

    Article  ADS  Google Scholar 

  9. Khaetskii AV, Nazarov YV (2000) Spin relaxation in semiconductor quantum dots. Phys Rev B 61:12639

    Article  ADS  Google Scholar 

  10. Khaetskii AV, Nazarov YV (2001) Spin-flip transitions between zeeman sublevels in semiconductor quantum dots. Phys Rev B 64:125316

    Article  ADS  Google Scholar 

  11. Kroutvar M, Ducommun Y, Heiss D, Bichler M, Schuh D, Abstreiter G, Finley, JJ (2004) Optically programmable electron spin memory using semiconductor quantum dots. Nature 432:81

    Article  ADS  Google Scholar 

  12. Nowak MP, Szafran B, Peeters FM, Partoens B, Pasek WJ (2011) Tuning of the spin-orbit interaction in a quantum dot by an in-plane magnetic field. Phys Rev B 83:245324

    Article  ADS  Google Scholar 

  13. Olendski O, Shahbazyan TV (2007) Theory of anisotropic spin relaxation in quantum dots. Phys Rev B 75:041306

    Article  ADS  Google Scholar 

  14. Prabhakar S, Melnik R (2015) Electric field control of spin splitting in III–V semiconductor quantum dots without magnetic field. Eur Phys J B 88:273

    Article  ADS  MathSciNet  Google Scholar 

  15. Prabhakar S, Raynolds JE (2009) Gate control of a quantum dot single-electron spin in realistic confining potentials: anisotropy effects. Phys Rev B 79:195307

    Article  ADS  Google Scholar 

  16. Prabhakar S, Raynolds J, Inomata A, Melnik R (2010) Manipulation of single electron spin in a gaas quantum dot through the application of geometric phases: the Feynman disentangling technique. Phys Rev B 82:195306

    Article  ADS  Google Scholar 

  17. Prabhakar S, Raynolds JE, Melnik R (2011) Manipulation of the landé g factor in inas quantum dots through the application of anisotropic gate potentials: exact diagonalization, numerical, and perturbation methods. Phys Rev B 84:155208

    Article  ADS  Google Scholar 

  18. Prabhakar S, Melnik R, Bonilla LL (2012) The influence of anisotropic gate potentials on the phonon induced spin-flip rate in GaAs quantum dots. Appl Phys Lett 100:023108

    Article  ADS  Google Scholar 

  19. Prabhakar S, Melnik R, Bonilla LL (2013) Electrical control of phonon-mediated spin relaxation rate in semiconductor quantum dots: Rashba versus dresselhaus spin-orbit coupling. Phys Rev B 87:235202

    Article  ADS  Google Scholar 

  20. Prabhakar S, Melnik R, Bonilla L (2014) Gate control of Berry phase in III–V semiconductor quantum dots. Phys Rev B 89:245310

    Article  ADS  Google Scholar 

  21. Prabhakar S, Melnik R, Inomata A (2014) Geometric spin manipulation in semiconductor quantum dots. Appl Phys Lett 104:142411

    Article  ADS  Google Scholar 

  22. Pryor CE, Flatté ME (2006) Landé g factors and orbital momentum quenching in semiconductor quantum dots. Phys Rev Lett 96:026804

    Article  ADS  Google Scholar 

  23. Pryor CE, Flatté ME (2007) Erratum: Landé g factors and orbital momentum quenching in semiconductor quantum dots. Phys Rev Lett 99:179901

    Article  ADS  Google Scholar 

  24. Sousa R, Sarma S (2003) Gate control of spin dynamics in III-V semiconductor quantum dots. Phys Rev B 68:155330

    Article  ADS  Google Scholar 

  25. Stano P, Fabian J (2006) Orbital and spin relaxation in single and coupled quantum dots. Phys Rev B 74:045320

    Article  ADS  Google Scholar 

  26. Stern F, Sarma S (1984) Electron energy levels in GaAs-\(\mathrm{Ga}_{1-x}\mathrm{Al}_{x}\mathrm{As}\) heterojunctions. Phys Rev B 30:840

    Article  ADS  Google Scholar 

  27. Takahashi S, Deacon RS, Yoshida K, Oiwa A, Shibata K, Hirakawa K, Tokura Y, Tarucha S (2010) Large anisotropy of the spin-orbit interaction in a single InAs self-assembled quantum dot. Phys Rev Lett 104:246801

    Article  ADS  Google Scholar 

  28. von Allmen P (1992) Conduction subbands in a GaAs/\(\mathrm{Al}_{\mathit{x}}\mathrm{Ga}_{1\mathrm{-}\mathit{x}}\) As quantum well: comparing different k⋅ p models. Phys Rev B 46:15382

    Article  ADS  Google Scholar 

  29. Woods LM, Reinecke TL, Lyanda-Geller Y (2002) Spin relaxation in quantum dots. Phys Rev B 66:161318

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Prabhakar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Prabhakar, S., Melnik, R. (2016). Spin Relaxation in GaAs Based Quantum Dots for Security and Quantum Information Processing Applications. In: Bonča, J., Kruchinin, S. (eds) Nanomaterials for Security. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7593-9_3

Download citation

Publish with us

Policies and ethics