Skip to main content

Spectroscopic Properties of Nanoceria Allowing Visualization of Its Antioxidant Action

  • Conference paper
  • First Online:
Nanomaterials for Security

Abstract

Two distinct luminescence centers were revealed in ceria nanocrystals: first one – Ce3+ ions with 5d-4f luminescence at 390 nm, and second one – Ce4+–O2− complexes showing charge transfer (CT) luminescence at 630 nm. Intensity of Ce3+ luminescence depends directly on the concentration of oxygen vacancies in nanoceria and can be varied by means of change of both heat treatment atmosphere from oxidizing to reducing and the size of nanocrystal. Ce3+ luminescence can be used for visualization of the processes of interaction between ceria nanoparticles and reactive oxygen species using relative intensity of Ce3+ band as a measure of Ce4+/Ce3+ ratio during oxidation reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Belousov VV, Fradkov AF, Lukyanov KA, Staroverov DB, Shakhbazov KS, Terskikh AV, Lukyanov S (2006) Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat Methods 3:281–286

    Article  Google Scholar 

  2. Casanova D, Bouzigues C, Nguyen T, Rivo O, Bouzhir-Sima RL, Gacoin T, Boilot J, Tharaux P, Alexandrou A (2009) Single europium-doped nanoparticles measure temporal pattern of reactive oxygen species production inside cells. Nat Nanotechnol 4:581–585

    Article  ADS  Google Scholar 

  3. Castleton CWM, Kullgren J, Hermansson K (2007) Tuning LDA + U for electron localization and structure at oxygen vacancies in ceria. J Chem Phys 127:244704–244704

    Article  ADS  Google Scholar 

  4. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  ADS  Google Scholar 

  5. Goubin F, Rocquefelte X, Whangbo MH, Montardi Y, Brec R, Jobic S (2004) Experimental and theoretical characterization of the optical properties of CeO2, SrCeO3, and Sr2CeO4 containing Ce4+ (f0) ions. Chem Mater 16:662–669

    Article  Google Scholar 

  6. Hong J, Heller DA, Kalbacova M, Kim J, Zhang J, Boghossian AA, Maheshri N, Strano MS (2010) Detection of single-molecule H2O2 signalling from epidermal growth factor receptor using fluorescent single-walled carbon nanotubes. Nat Nanotechnol 5:302–309

    Article  ADS  Google Scholar 

  7. Jorgensen K (1970) Electron transfer spectra. Wiley, New York

    Google Scholar 

  8. Klochkov VK, Grigorova AV, Sedyh OO, Malyukin YV (2012) The influence of agglomeration of nanoparticles on their superoxide dismutase-mimetic activity. Colloids Surf A: Physicochem Eng Asp 409:176–182

    Article  Google Scholar 

  9. Lee D, Khaja S, Velasquez-Castano JC, Dasari M, Sun C, Petros J, Taylor WR, Murthy N (2007) In vivo imaging of hydrogen peroxide with chemiluminescent nanoparticles. Nat Mater 6:765–769

    Article  ADS  Google Scholar 

  10. Li L, Yang HK, Moon BK, Fu Z, Guo C, Jeong JH, Lee HS (2008) Photoluminescence properties of CeO2: Eu3+ nanoparticles synthesized by a sol-gel method. J Phys Chem C 113:610–617

    Article  Google Scholar 

  11. Marabelli F, Wachter P (1987) Covalent insulator CeO2: optical reflectivity measurements. Phys Rev B 36:1238–1242

    Article  ADS  Google Scholar 

  12. Masalov A, Viagin O, Maksimchuk P, Seminko V, Bespalova I, Aslanov A, Malyukin Yu, Zorenko Yu (2014) Formation of luminescent centers in CeO2 nanocrystals. J Lumines 145:61–64

    Article  Google Scholar 

  13. Rhee SG (2006) H2O2, a necessary evil for cell signaling. Science 312:1882–1883

    Article  Google Scholar 

  14. Rzigalinski BA (2005) Nanoparticles and cell longevity. Technol Cancer Res Treat 4:651–659

    Article  Google Scholar 

  15. Schubert D, Dargusch R, Raitano J, Chan SW (2006) Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem Biophys Res Commun 342:86–91

    Article  Google Scholar 

  16. Skorodumova NV, Simak SI, Lundqvist BI, Abrikosov IA, Johansson B (2002) Quantum origin of the oxygen storage capability of ceria. Phys Rev Lett 89(16660):1–8

    Google Scholar 

  17. Tarnuzzer RW, Colon J, Patil S, Seal S (2005) Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage. Nano Lett 5:2573–2577

    Article  ADS  Google Scholar 

  18. Trovarelli A, Fornasiero P (2002) Catalysis by ceria and related materials. Imperial College Press, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Seminko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Seminko, V. et al. (2016). Spectroscopic Properties of Nanoceria Allowing Visualization of Its Antioxidant Action. In: Bonča, J., Kruchinin, S. (eds) Nanomaterials for Security. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7593-9_12

Download citation

Publish with us

Policies and ethics