Skip to main content

Physical Properties of \((\mathbf{As}_{\mathbf{2}}\mathbf{Se}_{\mathbf{3}})_{\mathbf{1}-x}: \mathbf{Sn}_{x}\) and \((\mathbf{As}_{\mathbf{4}}\mathbf{S}_{\mathbf{3}}\mathbf{Se}_{\mathbf{3}})_{\mathbf{1}-x}: \mathbf{Sn}_{x}\) Glasses

  • Conference paper
  • First Online:
Nanomaterials for Security

Abstract

Experimental results on some physical and optical properties of (As2Se\(_{3})_{1-x}\):Sn x and (As4S3Se\(_{3})_{1-x}\):Sn x (x = 0 ÷ 10 at %) glasses and amorphous films (\(d \sim 2.0\,\upmu\) m) are presented. The bulk chalcogenide glasses are studied by X-ray diffraction spectroscopy and nanoindentation methods. It is established that the addition of these amounts of tin (x = 0 ÷ 10 at %) does not lead to significant changes in the physical properties of the glass, such as values of stress and Young’s modulus related to the modification of the density and compactness. The XRD measurements show that the Sn impurities in the (As4S3Se\(_{3})_{1-x}\):Sn x do not significantly change the shape of the first sharp diffraction peak (FSDP) of the X-ray diffraction patterns either; the intensity and the position of the FSDP nonmonotonically depend on the Sn concentration. It has been found that the addition of these amounts of tin in (As4S3Se\(_{3})_{1-x}\):Sn x does not lead to significant changes in the glass physical properties, such as values of stress and Young’s modulus related to the modification of the density and compactness. The study of the photoplastic effect is performed in situ, with illumination of the bulk and thin film samples during indentation as well as their indentation after illumination with a green laser (\(\lambda = 532\) nm) at a power of P = 50 mV/cm2. The hardness is calculated from load-displacement curves by the Oliver–Pharr method. A sharp increase in hardness is registered if the tin concentration exceeds a value of 3–4 % Sn. The hardness H of (As2Se\(_{3})_{1-x}\):Sn x films varies between 115 and 130 kg/mm2. It is found that the hardness H of amorphous thin films is generally higher than the hardness of bulk samples with the same chemical composition. In this study, we are focused on the mechanical characteristics of high-purity As2Se3:Sn x thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Inoue A, Shen B, Nishiyama N, Miller M, Liaw P (eds) (2008) Bulk metallic glasses. Springer, New York, pp 1–25

    Book  Google Scholar 

  2. Inoue A, Shen B, Takeuchi A (2008) Mater Trans 47:1275

    Article  Google Scholar 

  3. Inoue A (2009) Mater Sci Eng A 304–306:1

    Google Scholar 

  4. Johnson WL (1999) MRS Bull 24:42

    Article  Google Scholar 

  5. Zakery A, Elliot SR (2007) Optical nonlinearities in chalcogenide glasses and their applications. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  6. Andriesh AM, Iovu MS, Shutov SD (2002) Optoel J Adv Mater 4(3):631

    Google Scholar 

  7. Nemec P, Jedelsky J, Frumar M, Štábl M, Vlček M (2004) J Phys Chem Solids 65(7):1253

    Article  ADS  Google Scholar 

  8. Gerbreders A, Teteris J (2007) J Optoel Adv Mater 9(10):3164

    Google Scholar 

  9. Reinfelde M, Teteris J (2011) J Optoel Adv Mater 13(11–12):1531

    Google Scholar 

  10. Iovu M, Shutov S, Popescu M (2002) NonCryst J Solids 924:299

    Google Scholar 

  11. Boolchand P, Georgiev D, Iovu M (2005) Chalcogenide Lett 2(4):27

    Google Scholar 

  12. Iovu M, Boolchand P, Georgiev D (2005) J Optoel Adv Mater 7(2):763

    Google Scholar 

  13. Iovu M, Harea D, Colomeico E (2008) J Optoel Adv Mater 10(4):862

    Google Scholar 

  14. Yee LY, Chaudhri MM (2006) Mech Mater 38:1213

    Article  Google Scholar 

  15. Trunov ML, Bilanich VS (2003) J Optoel Adv Mater 5(5):1085

    Google Scholar 

  16. Yannopoulos SN, Trunov ML (2009) Phys Status Solidi B 246(8):1773

    Article  ADS  Google Scholar 

  17. Osipyan Yu A, Savchenko IB (1968) Pis’ma Zh Eksp Teor Fiz 7:130

    Google Scholar 

  18. Gerasimov AB, Chiradze GD, Kutivadze NG (2001) Semiconductors 35:72

    Article  ADS  Google Scholar 

  19. Carlsson L, Svensson C (1970) J Appl Phys 41:1652

    Article  ADS  Google Scholar 

  20. Matsuda A, Mizuno H, Takayama T, Saito M, Kikuchi M (1974) Appl Phys Lett 25:411

    Article  ADS  Google Scholar 

  21. Igo T, Noguchi Y, Nagai H (1974) Appl Phys Lett 25:193

    Article  ADS  Google Scholar 

  22. Koseki H, Odajima A (1982) Jpn J Appl Phys 21:424

    Article  ADS  Google Scholar 

  23. Iovu MS, Shutov SD, Toth L (1996) Physica Status Solidi (b) 195:149

    Article  ADS  Google Scholar 

  24. Iovu MS, Syrbu NN, Shutov SD, Vasiliev IA, Rebeja S, Colomeico E, Popescu M, Sava F (1999) Physica Status Solidi (a) 175(2):623

    Article  ADS  Google Scholar 

  25. Iovu MS, Shutov SD, Arkhipov VI, Adriaenssens GJ (2002) Noncryst J Solids 299/302:1008

    Google Scholar 

  26. Boolchand P, Georgiev DG, Iovu MS (2005) Chalcogenide Lett 2(4):27

    Google Scholar 

  27. Iovu MS, Harea DV, Cojocaru IA, Colomeico EP, Prisacari A, Ciorba VG (2007) J Optoel Adv Mater 9(10):3138

    Google Scholar 

  28. Popescu M, Andries A, Ciumas V, Iovu M, Sutov S, Tiuleanu D (1996) Fizica sticlelor calcogenice. Editura Stiintifica Bucuresti – I.E.P. Stiinta, Chisinau

    Google Scholar 

  29. Tatarinova L (1983) The structure of amorphous solids and liquids. Nauka, Moscow

    Google Scholar 

  30. Popescu M (1996) In: Andriesh A, Bertolotti M (eds) Physics and applications of noncrystalline semiconductors in optoelectronics, vol 36, p 215

    Google Scholar 

  31. Popescu M, Tudorica F, Andriesh A, Iovu M, Shutov S, Bulgaru M, Colomeyko E, Malkov S, Verlan V, Leonovici M, Mihai V, Steflea M (1995) Buletinul Academiei de Stiinte a Republicii Moldova, Fizica si tehnica 3:3

    Google Scholar 

  32. Borisova ZU (1981) Glassy semiconductors. Plenum Press, New York, pp 215–220 and references therein

    Google Scholar 

  33. Borisova ZU (1983) Chalcogenide semiconducting glasses. Khimiya, St. Petersburg. In Russian

    Google Scholar 

  34. Boyarskaya Yu S (1986) Physics of microindentitation processes. Stiinta, Kishinev. In Russian

    Google Scholar 

  35. Kumar P, Thangaraj R (2006) J Noncryst Solids 352:2288

    Article  ADS  Google Scholar 

  36. Sava F (2001) J Optoel Adv Mater 3(2):425

    Google Scholar 

  37. Shchurova NN, Savchenko ND (2001) J Optoel Adv Mater 3(2):491

    Google Scholar 

  38. Trunov ML (2008) J Phys D: Appl Phys 41:074011

    Article  Google Scholar 

  39. Yannopoulos SN, Trunov ML (2009) Phys Status Solidi B 246(8):1773

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Harea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Iaseniuc, O.V., Harea, D.V., Harea, E.E., Volodina, G.F., Iovu, M.S. (2016). Physical Properties of \((\mathbf{As}_{\mathbf{2}}\mathbf{Se}_{\mathbf{3}})_{\mathbf{1}-x}: \mathbf{Sn}_{x}\) and \((\mathbf{As}_{\mathbf{4}}\mathbf{S}_{\mathbf{3}}\mathbf{Se}_{\mathbf{3}})_{\mathbf{1}-x}: \mathbf{Sn}_{x}\) Glasses. In: Bonča, J., Kruchinin, S. (eds) Nanomaterials for Security. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7593-9_10

Download citation

Publish with us

Policies and ethics