Skip to main content

Part of the book series: Focus on Structural Biology ((FOSB,volume 9))

  • 1144 Accesses

Abstract

Many experimental studies have shown that the prion AGAAAAGA palindrome hydrophobic region (113–120) has amyloid fibril forming properties and plays an important role in prion diseases. However, due to the unstable, noncrystalline and insoluble nature of the amyloid fibril, to date structural information on AGAAAAGA region (113–120) has been very limited. This region falls just within the N-terminal unstructured region PrP (1–123) of prion proteins. Traditional X-ray crystallography and NMR spectroscopy experimental methods cannot be used to get its structural information. Under this background, this chapter introduces a novel approach of the canonical dual theory to address the 3D atomic-resolution structure of prion AGAAAAGA amyloid fibrils. The novel and powerful canonical dual computational approach introduced in this chapter is for the molecular modeling of prion AGAAAAGA amyloid fibrils, and that the optimal atomic-resolution structures of prion AGAAAAGA amyloid fibils presented in this chapter are useful for the drive to find treatments for prion diseases in the field of medicinal chemistry. Overall, this chapter presents an important method and provides useful information for treatments of prion diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Apostol MI, Wiltzius JJW, Sawaya MR, Cascio D, Eisenberg D (2011) Atomic structures suggest determinants of transmission barriers in mammalian prion disease. Biochem 50(13):2456–2463

    Article  CAS  Google Scholar 

  2. Brown DR (2000) Prion protein peptides: optimal toxicity and peptide blockade of toxicity. Mol Cell Neurosci 15(1):66–78

    Article  CAS  PubMed  Google Scholar 

  3. Brown DR (2001) Microglia and prion disease. Microsc Res Tech 54(2):71–80

    Article  CAS  PubMed  Google Scholar 

  4. Brown DR, Herms J, Kretzschmar HA (1994) Mouse cortical cells lacking cellular PrP survive in culture with a neurotoxic PrP fragment. Neuroreport 5(16):2057–2060

    Article  CAS  PubMed  Google Scholar 

  5. Cai L, Wang Y, Wang JF, Chou KC (2011) Identification of proteins interacting with human SP110 during the process of viral infections. Med Chem 7(2):121–126

    Article  CAS  PubMed  Google Scholar 

  6. Call ME, Wucherpfennig KW, Chou JJ (2010) The structural basis for intramembrane assembly of an activating immunoreceptor complex. Nat Immunol 11(11):1023–1029

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Carter DB, Chou KC (1998) A model for structure dependent binding of Congo Red to Alzeheimer beta-amyloid fibrils. Neurobiol Aging 19(1):37–40

    Article  CAS  PubMed  Google Scholar 

  8. Case DA, Darden TA, Cheatham TE, Simmerling III CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts BP, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, Wong KF, Paesani F, Vanicek J, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh MJ, Cui G, Roe DR, Mathews DH, Seetin MG, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA (2010) AMBER 11, University of California, San Francisco

    Google Scholar 

  9. Chen C, Chen L, Zou X, Cai P (2009) Prediction of protein secondary structure content by using the concept of Chou’s pseudo amino acid composition and support vector machine. Protein Peptide Lett 16(1):27–31

    Article  Google Scholar 

  10. Chou KC (1985) Low-frequency motions in protein molecules: beta-sheet and beta-barrel. Biophys J 48(2):289–297

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Chou KC (1988) Review: low-frequency collective motion in biomacromolecules and its biological functions. Biophys Chem 30(1):3–48

    Article  CAS  PubMed  Google Scholar 

  12. Chou KC (2004) Molecular therapeutic target for type-2 diabetes. J Proteome Res 3(6):1284–1288

    Article  CAS  PubMed  Google Scholar 

  13. Chou KC (2004) Insights from modelling the tertiary structure of BACE2. J Proteome Res 3(5):1069–1072

    Article  CAS  PubMed  Google Scholar 

  14. Chou KC (2004) Modelling extracellular domains of GABA-A receptors: subtypes 1, 2, 3, and 5. Biochem Biophys Res Commun 316(3):636–642

    Article  CAS  PubMed  Google Scholar 

  15. Chou KC (2004) Insights from modelling the 3D structure of the extracellular domain of alpha7 nicotinic acetylcholine receptor. Biochem Biophy Res Co 319(2):433–438

    Article  CAS  Google Scholar 

  16. Chou KC (2005) Modeling the tertiary structure of human cathepsin-E. Biochem Biophys Res Commun 331(1):56–60

    Article  CAS  PubMed  Google Scholar 

  17. Chou KC (2005) Coupling interaction between thromboxane A2 receptor and alpha-13 subunit of guanine nucleotide-binding protein. J Proteome Res 4(5):1681–1686

    Article  CAS  PubMed  Google Scholar 

  18. Chou KC (2011) Some remarks on protein attribute prediction and pseudo amino acid composition (50th anniversary year review). J Theor Biol 273(1):236–247

    Article  CAS  PubMed  Google Scholar 

  19. Chou KC, Carlacci L (1991) Energetic approach to the folding of alpha/beta barrels. Proteins: Struct, Funct, Genet 9(4):280–295

    Article  CAS  Google Scholar 

  20. Chou KC, Carlacci L, Maggiora GM (1990) Conformational and geometrical properties of idealized beta-barrels in proteins. J Mol Biol 213(2):315–326

    Article  CAS  PubMed  Google Scholar 

  21. Chou KC, Howe WJ (2002) Prediction of the tertiary structure of the beta-secretase zymogen. Biochem Biophys Res Commun 292(3):702–708

    Article  CAS  PubMed  Google Scholar 

  22. Chou KC, Nemethy G, Rumsey S, Tuttle RW, Scheraga HA (1986) Interactions between two beta-sheets: energetics of beta/beta packing in proteins. J Mol Biol 188(4):641–649

    Article  CAS  PubMed  Google Scholar 

  23. Chou KC, Nemethy G, Scheraga HA (1983) Effects of amino acid composition on the twist and the relative stability of parallel and antiparallel beta-sheets. Biochemistry 22(26):6213–6221

    Article  CAS  Google Scholar 

  24. Chou KC, Nemethy G, Scheraga, HA (1983) Role of interchain interactions in the stabilization of right-handed twist of β-sheets. J Mol Biol 168(2):389–407

    Article  CAS  PubMed  Google Scholar 

  25. Chou KC, Nemethy G, Scheraga HA (1990) Review: energetics of interactions of regular structural elements in proteins. Acc Chem Res 23(5):134–141

    Article  CAS  Google Scholar 

  26. Chou KC, Pottle M, Nemethy G, Ueda Y, Scheraga HA (1982) Structure of beta-sheets: origin of the right-handed twist and of the increased stability of antiparallel over parallel sheets. J Mol Biol 162(1):89–112

    Article  CAS  PubMed  Google Scholar 

  27. Chou KC, Scheraga HA (1982) Origin of the right-handed twist of beta-sheets of poly-L-valine chains. Proc Natl Acad Sci U S A 79(22):7047–7051

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Chou KC, Shen HB (2009) Review: recent advances in developing web-servers for predicting protein attributes. Nat Sci 1(2):63–92

    CAS  Google Scholar 

  29. Chou KC, Wei DQ, Zhong WZ (2003) Binding mechanism of coronavirus main proteinase with ligands and its implication to drug design against SARS (Erratum: ibid., 2003, Vol 310, 675). Biochem Biophys Res Comm 308(1):148–151

    Google Scholar 

  30. Chou KC, Wu ZC, Xiao X (2011) iLoc-Euk: a multi-label classifier for predicting the subcellular localization of singleplex and multiplex eukaryotic proteins. PLoS ONE 6(3):e18258

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Chou KC, Zhang CT (1995) Review: prediction of protein structural classes. Crit Rev Biochem Mol Biol 30(4):275–349

    Article  CAS  PubMed  Google Scholar 

  32. Ding H, Luo L, Lin H (2009) Prediction of cell wall lytic enzymes using Chou’s amphiphilic pseudo amino acid composition. Protein Pept Lett 16(4):351–355

    Article  CAS  PubMed  Google Scholar 

  33. Du QS, Huang RB, Wang SQ, Chou KC (2010) Designing inhibitors of M2 proton channel against H1N1 swine influenza virus. PLoS ONE 5(2):e9388

    Article  PubMed Central  PubMed  Google Scholar 

  34. Du QS, Sun H, Chou KC (2007) Inhibitor design for SARS coronavirus main protease based on “distorted key theory”. Med Chem 3(1):1–6

    Article  CAS  PubMed  Google Scholar 

  35. Fang SC, Gao DY, Sheu RL, Wu SY (2008) Canonical dual approach to solving 0-1 quadratic programming problems. J Ind Manag Optim 4(1):125–142

    Article  Google Scholar 

  36. Gao DY (1997) Dual extremum principles in finite deformation theory with applications to post-buckling analysis of extended nonlinear beam theory. Appl Mech Rev 50(11):S64–S71

    Article  Google Scholar 

  37. Gao DY (2000) Duality principles in nonconvex systems: theory, methods and applications. Kluwer Academic, Dordrecht/Boston/London. ISBN:0-7923-6145-8

    Book  Google Scholar 

  38. Gao DY (2008) Advances in canonical duality theory with applications to global optimization. In: Proceedings foundations of computer-aided process operations (FOCAPO 2008), Cambridge, 29 June–2 July 2008

    Google Scholar 

  39. Gao DY, Ruan N, Pardalos PM (2012) Canonical dual solutions to sum of fourth-order polynomials minimization problems with applications to sensor network localization. In: Boginski VL, Commander CW, Pardalos PM, Ye YY (eds) Sensors: theory, algorithms, and applications. Springer optimization and its applications, vol 61, chapter 3, pp 37–54. ISBN:978-0-387-88618-3

    Google Scholar 

  40. Gao DY, Wu CZ (2012) On the triality theory in global optimization (I) unconstrained problems. arXiv:1104.2970v2 (http://arxiv.org/abs/1104.2970v2)

  41. Gong K, Li L, Wang JF, Cheng F, Wei DQ, Chou KC (2009) Binding mechanism of H5N1 influenza virus neuraminidase with ligands and its implication for drug design. Med Chem 5(3):242–249

    Article  CAS  PubMed  Google Scholar 

  42. Griffith JS (1967) Self-replication and scrapie. Nature 215(5105):1043–1044

    Article  CAS  PubMed  Google Scholar 

  43. Grosso A, Locatelli M, Schoen F (2009) Solving molecular distance geometry problems by global optimization algorithms. Comput Optim Appl 43(1):23–37

    Article  Google Scholar 

  44. Hayat M, Khan A (2011) Predicting membrane protein types by fusing composite protein sequence features into pseudo amino acid composition. J Theor Biol 271(1):10–17

    Article  CAS  PubMed  Google Scholar 

  45. Holscher C, Delius H, Burkle A (1998) Overexpression of nonconvertible PrPC delta114–121 in scrapie-infected mouse neuroblastoma cells leads to trans-dominant inhibition of wild-type PrPSc accumulation. J Virol 72(2):1153–1159

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Huang HX, Pardalos PM (2002) Multivariable partition approach for optimization problems. Cybern Syst Anal 2:134–147

    Google Scholar 

  47. Huang HX, Pardalos PM, Shen ZJ (2002) Equivalent formulations and necessary optimality conditions for the Lennard-Jones problem. J Glob Optim 22(1–4):97–118

    Article  Google Scholar 

  48. Humphrey W, Dalke A, Schulten K (1996) VMD – visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  CAS  PubMed  Google Scholar 

  49. Jobling MF, Huang X, Stewart LR, Barnham KJ, Curtain C, Volitakis I, Perugini M, White AR, Cherny RA, Masters CL, Barrow CJ, Collins SJ, Bush AI, Cappai R (2001) Copper and Zinc binding modulates the aggregation and neurotoxic properties of the prion peptide PrP 106–126. Biochem 40(27):8073–8084

    Article  CAS  Google Scholar 

  50. Jobling MF, Stewart LR, White AR, McLean C, Friedhuber A, Maher F, Beyreuther K, Masters CL, Barrow CJ, Collins SJ, Cappai R (1999) The hydrophobic core sequence modulates the neurotoxic and secondary structure properties of the prion peptide 106–126. J Neurochem 73(4):1557–1565

    Article  CAS  PubMed  Google Scholar 

  51. Kandaswamy KK, Chou KC, Martinetz T, Moller S, Suganthan PN, Sridharan S, Pugalenthi G (2011) AFP-Pred: a random forest approach for predicting antifreeze proteins from sequence-derived properties. J Theor Biol 270(1):56–62

    Article  CAS  PubMed  Google Scholar 

  52. Kuwata K, Matumoto T, Cheng H, Nagayama K, James TL, Roder H (2003) NMR-detected hydrogen exchange and molecular dynamics simulations provide structural insight into fibril formation of prion protein fragment 106–126. Proc Natl Acad Sci U S A 100(25):14790–14795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Lee S, Yee VC (2011) Diversity in the cross-β spine structure of prion peptides. Journal:To be Published: http://www.rcsb.org/pdb/explore/explore.do?structureId=3MD4. doi:10.2210/pdb3md4/pdb and doi:10.2210/pdb3md5/pdb

  54. Liao QH, Gao QZ, Wei J, Chou KC (2011) Docking and molecular dynamics study on the inhibitory activity of novel inhibitors on epidermal growth factor receptor (EGFR). Med Chem 7(1):24–31

    Article  CAS  PubMed  Google Scholar 

  55. Lin H, Ding H (2011) Predicting ion channels and their types by the dipeptide mode of pseudo amino acid composition. J Theor Biol 269(1):64–69

    Article  CAS  PubMed  Google Scholar 

  56. Locatelli M, Schoen F (2008) Structure prediction and global optimization. Optima Math Program Soc Newsl U S A 76:1–8

    Google Scholar 

  57. Mohabatkar H (2010) Prediction of cyclin proteins using Chou’s pseudo amino acid composition. Protein Peptide Lett 17(10):1207–1214

    Article  CAS  Google Scholar 

  58. More JJ, Wu ZJ (1997) Global continuation for distance geometry problems. SIAM J Optim 7(3):814–836

    Article  Google Scholar 

  59. Norstrom EM, Mastrianni JA (2005) The AGAAAAGA palindrome in PrP is required to generate a productive PrPSc-PrPC complex that leads to prion propagation. J Biol Chem 280(29):27236–27243

    Article  CAS  PubMed  Google Scholar 

  60. Oxenoid K, Chou JJ (2005) The structure of phospholamban pentamer reveals a channel-like architecture in membranes. Proc Natl Acad Sci USA 102(31):10870–10875

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Pardalos PM, Shalloway D, Xue GL (1994) Optimization methods for computing global minima of nonconvex potential energy functions. J Glob Optim 4(2):117–133

    Article  Google Scholar 

  62. Pielak RM, Chou JJ (2010) Solution NMR structure of the V27A drug resistant mutant of influenza A M2 channel. Biochem Biophys Res Commun 401(1):58–63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Pielak RM, Chou JJ (2011) Influenza M2 proton channels. Biochim Biophys Acta 1808(2):522–529

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Pielak RM, Jason R, Schnell JR, Chou JJ (2009) Mechanism of drug inhibition and drug resistance of influenza A M2 channel. Proc Natl Acad Sci U S A 106(18):7379–7384

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Rosenbrock HH (1960) An automatic method for finding the greatest or least value of a function. Comput J 3(3):175–184

    Article  Google Scholar 

  66. Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, Apostol MI, Thompson MJ, Balbirnie M, Wiltzius JJ, McFarlane HT, Madsen A, Riekel C, Eisenberg D (2007) Atomic structures of amyloid cross-β spines reveal varied steric zippers. Nature 447(7143):453–457

    Article  CAS  PubMed  Google Scholar 

  67. Schnell JR, Chou JJ (2008) Structure and mechanism of the M2 proton channel of influenza A virus. Nature 451(7178):591–595

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Tsai HHG (2005) Understanding the biophysical mechanisms of protein folding, misfolding, and aggregation at molecular level (in Chinese). Chem (The Chinese Chem Soc of Taipei) 63:601–612

    CAS  Google Scholar 

  69. Wagoner VA (2010) Computer simulation studies of self-assembly of fibril forming peptides with an intermediate resolution protein model. Ph.D. thesis, North Carolina State University, Raleigh

    Google Scholar 

  70. Wang JF, Chou KC (2010) Insights from studying the mutation-induced allostery in the M2 proton channel by molecular dynamics. Protein Eng Des Sel 23(8):663–666

    Article  CAS  PubMed  Google Scholar 

  71. Wang J, Pielak RM, McClintock MA, Chou JJ (2009) Solution structure and functional analysis of the influenza B proton channel. Nat Struct Mol Biol 16(12):1267–1271

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Wang JF, Wei DQ, Li L, Chou KC (2008) Review: drug candidates from traditional chinese medicines. Curr Top Med Chem 8(18):1656–1665

    Article  CAS  PubMed  Google Scholar 

  73. Wang JF, Yan JY, Wei DQ, Chou KC (2009) Binding of CYP2C9 with diverse drugs and its implications for metabolic mechanism. Med Chem 5(3):263–270

    Article  CAS  PubMed  Google Scholar 

  74. Wegner C, Romer A, Schmalzbauer R, Lorenz H, Windl O, Kretzschmar HA (2002) Mutant prion protein acquires resistance to protease in mouse neuroblastoma cells. J Gen Virol 83(Pt 5):1237–1245

    Article  CAS  PubMed  Google Scholar 

  75. Wei DQ, Sirois S, Du QS, Arias HR, Chou KC (2005) Theoretical studies of Alzheimer’s disease drug candidate [(2,4-dimethoxy) benzylidene]-anabaseine dihydrochloride (GTS-21) and its derivatives. Biochem Biophys Res Commun 338(2):1059–1064

    Article  CAS  PubMed  Google Scholar 

  76. Wei H, Wang CH, Du QS, Meng J, Chou KC (2009) Investigation into adamantane-based M2 inhibitors with FB-QSAR. Med Chem 5(4):305–317

    Article  CAS  PubMed  Google Scholar 

  77. Xue GL (1993) Parallel two-level simulated annealing. Proceedings of the 7th international conference on Supercomputing, pp 357–366. ISBN:0-89791-600-X, doi:10.1145/165939.166011

    Google Scholar 

  78. Xue GL, Maier RS, Rosen JB (1992) Minimizing the Lennard-Jones potential function on a massively parallel computer. Proceedings of the 6th international conference on Supercomputing, pp 409–416. ISBN:0-89791-485-6, doi:10.1145/143369.143443

    Google Scholar 

  79. Zeng YH, Guo YZ, Xiao RQ, Yang L, Yu LZ, Li ML (2009) Using the augmented Chou’s pseudo amino acid composition for predicting protein submitochondria locations based on auto covariance approach. J Theory Biol 259(2):366–372

    Article  CAS  Google Scholar 

  80. Zhang JP (2009) Studies on the structural stability of rabbit prion probed by molecular dynamics simulations. J Biomol Struct Dyn 27(2):159–162

    Article  PubMed  Google Scholar 

  81. Zhang JP, Gao DG, Yearwood J (2011) A novel canonical dual computational approach for prion AGAAAAGA amyloid fibril molecular modeling. J Theory Biol 284(1):149–157

    Article  CAS  Google Scholar 

  82. Zheng J, Ma BY, Tsai CJ, Nussinov R (2006) Structural stability and dynamics of an amyloid-forming peptide GNNQQNY from the yeast prion Sup-35. Biophy J 91(3):824–833

    Article  CAS  Google Scholar 

  83. Zhou XB, Chen C, Li ZC, Zou XY (2007) Using Chou’s amphiphilic pseudo-amino acid composition and support vector machine for prediction of enzyme subfamily classes. J Theory Biol 248(3):546–551

    Article  CAS  Google Scholar 

  84. Zou ZH, Bird RH, Schnabel RB (1997) A stochastic/perturbation global optimization algorithm for distance geometry problems. J Glob Optim 11(1):91–105

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zhang, J. (2015). A Novel Canonical Dual Global Optimization Computational Approach. In: Molecular Structures and Structural Dynamics of Prion Proteins and Prions. Focus on Structural Biology, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7318-8_13

Download citation

Publish with us

Policies and ethics