Skip to main content

Grating Resonances on Periodic Arrays of Sub-wavelength Wires and Strips: From Discoveries to Photonic Device Applications

  • Chapter
  • First Online:
Contemporary Optoelectronics

Abstract

This chapter reviews the nature and the history of discovery of the high-quality natural modes existing on periodic arrays of many sub-wavelength scatterers as specific periodically structured open resonators . Although such modes can be found on various finite and infinite arrays made of metallic and dielectric elements, we concentrate our discussion around infinite arrays of silver wires and strips in the optical range. The grating modes (G-modes), like any other natural modes, are the “parents” of the corresponding resonances in the electromagnetic-wave scattering and absorption . Their wavelengths in either case are determined mainly by the period and the angle of incidence that has been a reason of their misinterpretation as Rayleigh anomalies. On the frequency scans of the reflectance or transmittance coefficients, G-mode resonances are usually observed as Fano -shape (double-extremum) spikes, while in the absorption they always display conventional Lorentz-shape peaks. If a grating is made of sub-wavelength size noble-metal elements, G-modes exist together with better known localized surface-plasmon modes (LSP-modes) whose wavelengths lay in the optical range. Thanks to high tunability and considerably higher Q-factors, the G-mode resonances can potentially supplement or even replace the LSP-mode resonances in the design of nanosensors , nanoantennas , and nanosubstrates for solar cells and surface-enhanced Raman scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.B. Johnson, R.W. Christy, Optical constants of the noble metals. Phys. Rev. B 6, 4370–4378 (1972)

    Article  ADS  Google Scholar 

  2. J. Homola, Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108(2), 462–493 (2008)

    Article  Google Scholar 

  3. N.P. Stognii, N.K. Sakhnenko, Plasmon resonances and their quality factors in a finite linear chain of coupled metal wires. IEEE J. Sel. Topics Quant. Electron. 19(3), 4602207 (2013)

    Article  Google Scholar 

  4. H. Lamb, On the reflection and transmission of electric waves by a metallic grating. Proc. London Math. Soc. 29, 523–544 (1898)

    MATH  MathSciNet  Google Scholar 

  5. L. Rayleigh, On the dynamical theory of gratings. Proc. Royal Soc. London A-79, 399–416 (1907)

    Google Scholar 

  6. V. Twersky, On a multiple scattering theory of the finite grating and the Wood anomalies. J. Appl. Phys. 23(10), 1099–1118 (1952)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. A.W.K. Pursley, The transmission of electromagnetic radiation through wire gratings. Tech. Report Project 2351, Eng. Res. Inst., Univ. Michigan Ann Arbor (1956)

    Google Scholar 

  8. A.Z. Elsherbeni, A.A. Kishk, Modeling of cylindrical objects by circular dielectric and conducting cylinders. IEEE Trans. Antennas Propagat. 40(1), 96–99 (1992)

    Article  ADS  Google Scholar 

  9. D. Felbacq, G. Tayeb, D. Maystre, Scattering by a random set of parallel cylinders. J. Opt. Soc. Am. A: 11(9), 2526–2538 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  10. K. Yasumoto, H. Toyama, T. Kushta, Accurate analysis of 2-D electromagnetic scattering from multilayered periodic arrays of circular cylinders using lattice sums technique. IEEE Trans. Antennas Propagat. 52(10), 2603–2611 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  11. K. Ohtaka, H. Numata, Multiple scattering effects in photon diffraction for an array of cylindrical dielectrics. Phys. Lett. 73-A(5–6), 411–413 (1979)

    Google Scholar 

  12. R. Gomez-Medina, M. Laroche, J.J. Saenz, Extraordinary optical reflection from sub-wavelength cylinder arrays. Opt. Exp. 14(9), 3730–3737 (2006)

    Article  ADS  Google Scholar 

  13. M. Laroche, S. Albaladejo, R. Gomez-Medina, J.J. Saenz, Tuning the optical response of nanocylinder arrays: an analytical study. Phys. Rev. B 74(9), 245422/10 (2006)

    Google Scholar 

  14. D.C. Marinica, A.G. Borisov, S.V. Shabanov, Second harmonic generation from arrays of subwavelength cylinders. Phys. Rev. B 76(8), 085311/10 (2007)

    Google Scholar 

  15. P. Ghenuche, G. Vincent, M. Laroche, N. Bardou, R. Haidar, J.-L. Pelouard, S. Collin, Optical extinction in single layer of nanorods. Phys. Rev. Lett., 109, 143903/5 (2012)

    Google Scholar 

  16. V.O. Byelobrov, J. Ctyroky, T.M. Benson, R. Sauleau, A. Altintas, A.I. Nosich, Low-threshold lasing modes of infinite periodic chain of quantum wires. Opt. Lett. 35(21), 3634–3636 (2010)

    Article  ADS  Google Scholar 

  17. V.O. Byelobrov, T.M. Benson, A.I. Nosich, Binary grating of sub-wavelength silver and quantum wires as a photonic-plasmonic lasing platform with nanoscale elements. IEEE J. Sel. Topics Quant. Electron. 18(6), 1839–1846 (2012)

    Article  Google Scholar 

  18. D.M. Natarov, V.O. Byelobrov, R. Sauleau, T.M. Benson, A.I. Nosich, Periodicity-induced effects in the scattering and absorption of light by infinite and finite gratings of circular silver nanowires. Opt. Exp. 19(22), 22176–22190 (2011)

    Article  ADS  Google Scholar 

  19. D.W. Kerr, C.H. Palmer, Anomalous behavior of thin-wire gratings. J. Opt. Soc. Am. 61(4), 450–456 (1971)

    Article  ADS  Google Scholar 

  20. D.M. Natarov, R. Sauleau, A.I. Nosich, Periodicity-enhanced plasmon resonances in the scattering of light by sparse finite gratings of circular silver nanowires. IEEE Photonics Techn. Lett. 24(1), 43–45 (2012)

    Google Scholar 

  21. Z.S. Agranovich, V.A. Marchenko, V.P. Shestopalov, Diffraction of a plane electro-magnetic wave from plane metallic lattices. Sov. Phys. Tech. Phys. 7, 277–286 (1962)

    Google Scholar 

  22. T. Uchida, T. Noda, T. Matsunaga, Spectral domain analysis of electromagnetic wave scattering by an infinite plane metallic grating. IEEE Trans. Antennas Propagat. 35(1), 46–52 (1987)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. A. Matsushima, T. Itakura, Singular integral equation approach to plane wave diffraction by an infinite strip grating at oblique incidence. J. Electromagn. Waves Applicat. 4(6), 505–519 (1990)

    Google Scholar 

  24. A. Christ, T. Zentgraf, J. Kuhl, S.G. Tikhodeev, N.A. Gippius, H. Giessen, Optical properties of planar metallic photonic crystal structures: experiment and theory. Phys. Rev. B 70(12), 125113/15 (2004)

    Google Scholar 

  25. R. Rodríguez-Berral, F. Medina, F. Mesa, M. García-Vigueras, Quasi-analytical modeling of transmission/reflection in strip/slit gratings loaded with dielectric slabs. IEEE Trans. Microwave Theory Tech. 60(3), 405–418 (2012)

    Article  ADS  Google Scholar 

  26. T.L. Zinenko, A.I. Nosich, Y. Okuno, Plane wave scattering and absorption by resistive-strip and dielectric-strip periodic gratings. IEEE Trans. Antennas Propag. 46(10), 1498–1505 (1998)

    Article  ADS  Google Scholar 

  27. T.L. Zinenko, A.I. Nosich, Plane wave scattering and absorption by flat gratings of impedance strips. IEEE Trans. Antennas Propagat. 54(7), 2088–2095 (2006)

    Article  ADS  Google Scholar 

  28. T.L. Zinenko, M. Marciniak, A.I. Nosich, Accurate analysis of light scattering and absorption by an infinite flat grating of thin silver nanostrips in free space using the method of analytical regularization. IEEE J. Sel. Topics Quant. Electron. 19(3), 9000108/8 (2013)

    Google Scholar 

  29. O.V. Shapoval, A.I. Nosich, Finite gratings of many thin silver nanostrips: optical resonances and role of periodicity. AIP Adv. 3(4), 042120/13 (2013)

    Google Scholar 

  30. O.V. Shapoval, R. Sauleau, A.I. Nosich, Modeling of plasmon resonances of multiple flat noble-metal nanostrips with a median-line integral equation technique. IEEE Trans. Nanotechnol. 12(3), 442–449 (2013)

    Article  ADS  Google Scholar 

  31. O.V. Shapoval, J. Ctyroky J., A.I. Nosich, Resonance effects in the optical antennas shaped as finite comb-like gratings of noble-metal nanostrips, Proc. SPIE, Integr. Optics: Phys. Simulat., 8781, 87810U/8 (2013)

    Google Scholar 

  32. K.T. Carron, W. Fluhr, M. Meier, A. Wokaun, H.W. Lehmann, Resonances of two-dimensional particle gratings in surface-enhanced Raman scattering. J. Opt. Soc. Am. B 3(3), 430–440 (1986)

    Article  ADS  Google Scholar 

  33. S. Zou, N. Janel, G.C. Schatz, Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. J. Chem. Phys. 120(23), 10871/5 (2004)

    Google Scholar 

  34. E.M. Hicks, S. Zou, G.C. Schatz, K.G. Spears, R.P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, M. Kall, Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. Nano Lett. 5(6), 1065–1070 (2005)

    Article  ADS  Google Scholar 

  35. N. Felidj, G. Laurent, J. Aubard, G. Levi, A. Hohenau, J.R. Krenn, F.R. Aussenegg, Grating-induced plasmon mode in gold nanoparticle arrays. J. Chem. Phys. 123(22), 221103/5 (2005)

    Google Scholar 

  36. F.J.G. Garcia de Abajo, Colloquium: light scattering by particle and hole arrays. Rev. Mod. Phys. 79(4), 1267–1289 (2007)

    Google Scholar 

  37. Y. Chu, E. Schonbrun, T. Yang, K.B. Crozier, Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays. Appl. Phys. Lett. 93(18), 181108/3 (2008)

    Google Scholar 

  38. V.G. Kravets, F. Schedin, A.N. Grigorenko, Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. Phys. Rev. Lett. 101(8), 087403/4 (2008)

    Google Scholar 

  39. B. Auguie, W.L. Barnes, Collective resonances in gold nanoparticle arrays. Phys. Rev. Lett. 101(14), 143902/4 (2008)

    Google Scholar 

  40. V. Giannini, G. Vecchi, J. Gomez Rivas, Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas. Phys. Rev. Lett. 105, 266801/4 (2010)

    Google Scholar 

  41. S.R.K. Rodriguez, M.C. Schaafsma, A. Berrier, Gomez Rivas. J. Collect. Reson. Plasm. Crystals: Size Matters. Phys. B 407(3), 4081–4085 (2012)

    Google Scholar 

  42. T.V. Teperik, A. Degiron, Design strategies to tailor the narrow plasmon-photonic resonances in arrays of metallic nanoparticles. Phys. Rev. B 86(24), 245425/5 (2012)

    Google Scholar 

  43. D.R. Fredkin, I. Mayergoyz, Resonant behavior of dielectric objects (electrostatic resonances). Phys. Rev. Lett. 91, 3902–3905 (2003)

    Article  Google Scholar 

  44. P. Offermans, M.C. Schaafsma, S.K.R. Rodriguez, Y. Zhang, M. Crego-Calama, S.H. Brongersma, J. Gomez Rivas, Universal scaling of the figure of merit of plasmonic sensors. ACS Nano 5(6), 5151–5157 (2011)

    Article  Google Scholar 

  45. A.G. Nikitin, A.V. Kabashin, H. Dallaporta, Plasmonic resonances in diffractive arrays of gold nanoantennas: near and far field effects. Opt. Exp. 20(25), 27941–27952 (2012)

    Article  ADS  Google Scholar 

  46. S. Feng, S. Darmawi, T. Henning, P.J. Klar, X. Zhang, A miniaturized sensor consisting of concentric metallic nanorings on the end facet of an optical fiber. Small 8, 1937–1944 (2012)

    Article  Google Scholar 

  47. A. Ricciardi, S. Savoia, A. Crescitelli, E. Esposito, V. Galdi, A. Cusano, Surface versus bulk sensitivity of sensors based on Rayleigh anomalies in metallic nanogratings. Proc. SPIE, Optical Sens. 8774, 87741 V/9 (2013)

    Google Scholar 

Download references

Acknowledgements

T.L.Z. and V.O.B. have contributed equally to this chapter. This work was supported, in part, by the National Academy of Sciences of Ukraine via the State Target Program “Nanotechnologies and Nanomaterials” and the International Visegrad Fund via the Ph.D. Scholarship to V.O.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander I. Nosich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zinenko, T.L., Byelobrov, V.O., Marciniak, M., Čtyroký, J., Nosich, A.I. (2016). Grating Resonances on Periodic Arrays of Sub-wavelength Wires and Strips: From Discoveries to Photonic Device Applications. In: Shulika, O., Sukhoivanov, I. (eds) Contemporary Optoelectronics. Springer Series in Optical Sciences, vol 199. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7315-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-7315-7_4

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-7314-0

  • Online ISBN: 978-94-017-7315-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics