Skip to main content

Sustainable Development and Material Flows

  • Chapter
Sustainability Science

Abstract

A major target of strategies toward a more sustainable resource use must be to find ways of remaining within the planetary boundaries, not only by reducing overall resource use but also through keeping within the system what we are already using. This makes it necessary to take a systemic perspective and look at the whole life cycle of joint product systems, raw material inputs, and respective emissions. Knowing and understanding the dynamics of material stocks and flows may be a first step toward managing them. In the context of society, this approach is known as socioeconomic metabolism and is increasingly applied especially in regional and urban contexts. Here, we introduce material flow analysis as a possible method for constructing and evaluating material and energy flows to gain an insight into the flows of specific substances within the anthropogenic system. We show the main characteristics and applications as well as possible limitations of such a modeling approach and conclude with implications for a further development of such methods to enable a shift from analysis to assessment and strategy building that reflects sustainability principles and goes beyond efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Further Reading

  • Ayres RU, Ayres LW (eds) (2002) A handbook of industrial ecology. Edward Elgar Publications, Cheltenham/Northampton

    Google Scholar 

  • Baccini P, Brunner PH (2012) Metabolism of the anthroposphere: analysis, evaluation, design. MIT Press, Cambridge

    Google Scholar 

  • Fischer-Kowalski M (1998a) Society’s metabolism – the intellectual history of material flow analysis, part I, 1860–1970. J Ind Ecol 2(1):61–78

    Article  Google Scholar 

  • Fischer-Kowalski M, Hüttler W (1999a) Society’s metabolism – the intellectual history of material flow analysis, Part II, 1970–1998. J Ind Ecol 2(4):107–136

    Article  Google Scholar 

  • Graedel TE, van der Voet E (eds) (2010) Linkages of sustainability. The MIT Press, Cambridge

    Google Scholar 

  • Journal of Industrial Ecology (2012) Special Issue: Sustain Urban Syst 16(6): 775–715

    Google Scholar 

References

  • Baccini P, Brunner PH (2012) Metabolism of the anthroposphere: analysis, evaluation, design. MIT Press, Cambridge

    Google Scholar 

  • Behera SK et al (2012) Evolution of “designed” industrial symbiosis networks in the Ulsan Eco-industrial Park: “research and development into business” as the enabling framework. J Clean Prod 29–30:103–112

    Article  Google Scholar 

  • Berg PG, Nycander G (1997) Sustainable neighbourhoods - a qualitative model for resource management in communities. Landsc Urban Plann 39(2):117–135

    Article  Google Scholar 

  • Bringezu S, Moriguchi Y (2002) Material flow analysis. In: Ayres RU, Ayres LW (eds) A handbook of industrial ecology. Edward Elgar Publications, Cheltenham/Northampton, pp 79–90

    Google Scholar 

  • Broyden CG (1965) A class of methods for solving nonlinear simultaneous equations. Math Comput 19:577–593

    Article  Google Scholar 

  • Chen H-S, Stadtherr MA (1985) A simultaneous-modular approach to process flowsheeting and optimization, part I: theory and implementation. AIChE J 31(11):1843–1856

    Article  CAS  Google Scholar 

  • Chertow MR (2000) Industrial symbiosis: literature and taxonomy. Annu Rev Energy Environ 25:313–37

    Article  Google Scholar 

  • Chrysoulakis N et al (2013) Sustainable urban metabolism as a link between bio-physical sciences and urban planning: the BRIDGE project. Landsc Urban Plann 112:100–117

    Article  Google Scholar 

  • Codoban N, Kennedy CA (2008) Metabolism of neighborhoods. J Urban Plann Dev 134(1):21–31

    Article  Google Scholar 

  • Cohen C, Lenzen M, Schaeffer R (2005) Energy requirements of households in Brazil. Energy Policy 33:555–562

    Article  Google Scholar 

  • Duvigneaud P, Denayeyer-De Smet S (1977) L’Ecosystéme Urbain Bruxellois, in Productivité en Belgique. In: Duvigneaud P, Kestemont P (eds) Traveaux de la Section Belge du Programme Biologique International, Bruxelles, pp 581–597

    Google Scholar 

  • Erkman S (2002) The recent history of industrial ecology. In: Ayres RU, Ayres LW (eds) A handbook of industrial ecology. Edward Elgar Publications, Cheltenham/Northampton, pp 27–35

    Google Scholar 

  • Finlayson BA (2012) Introduction to chemical engineering computing, 2nd edn. Wiley, Hoboken

    Book  Google Scholar 

  • Fischer-Kowalski M (1998) Society’s metabolism – the intellectual history of material flow analysis, part I, 1860–1970. J Ind Ecol 2(1):61–78

    Google Scholar 

  • Fischer-Kowalski M, Hüttler W (1999) Society’s metabolism – the intellectual history of material flow analysis, part II, 1970–1998. J Ind Ecol 2(4):107–136

    Google Scholar 

  • Frosch RA, Gallopoulos NE (1989) Strategies for manufacturing. Sci Am 189(3):144–152

    Article  Google Scholar 

  • Gibbs D, Deutz P (2007) Reflections on implementing industrial ecology through eco-industrial park development. J Clean Prod 15(17):1683–1695

    Article  Google Scholar 

  • Graedel TE (1996) On the concept of industrial ecology. Ann Rev Energy Environ 21:69–98

    Article  Google Scholar 

  • Graedel TE, van der Voet E (2010) Linkages of sustainability. MIT Press, Cambridge/London

    Google Scholar 

  • Graedel TE et al (2012) Methodology of metal criticality determination. Environ Sci Technol 46(2):1063–1070

    Article  CAS  Google Scholar 

  • Guinée JB (Final ed) (2002) Handbook on life cycle assessment – operational guide to the ISO standards. Kluwer Academic Publishers, Dordrecht/Boston/London

    Google Scholar 

  • Hannon B, Ruth M (1994) Dynamic modeling. Springer, Berlin/Heidelberg/New York

    Book  Google Scholar 

  • Heijungs R (1994) A generic method for the identification of options for cleaner products. Ecol Econ 10:69–81

    Article  Google Scholar 

  • Heijungs R, Suh S (2002) The computational structure of life cycle assessment. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • ITU (International Telecommunications Union) Statistics (2013) ICT facts and figures. Available at: http://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx. Accessed 21 Apr 2014

  • Kellett R, Christen A, Coops NC, van der Laan M, Crawford B, Tooke TR, Olchovski I (2013) A systems approach to carbon cycling and emissions modeling at an urban neighborhood scale. Landsc Urban Plan 110:48–58

    Article  Google Scholar 

  • Kennedy C, Cuddihy J, Engel-Yan J (2007) The changing metabolism of cities. J Ind Ecol 11(2):43–59

    Article  CAS  Google Scholar 

  • Kennedy C, Pincetl S, Bunje P (2011) The study of urban metabolism and its applications to urban planning and design. Environ Poll 159(8–9):1965–73

    Article  CAS  Google Scholar 

  • Lang DJ, Binder CR, Scholz RW, Schleiß K, Stäubli B (2006) Impact factors and regulatory mechanisms for material flow management: Integrating stakeholder and scientific perspectives The case of bio-waste delivery. Resour Conserv Recy 47:101–132

    Article  Google Scholar 

  • Lenzen M, Peters GM (2009) How city dwellers affect their resource hinterland. J Ind Ecol 14(1):73–90

    Article  Google Scholar 

  • Lifset R, Graedel TE (2002) Industrial ecology: goals and definitions. In: Ayres RU, Ayres LW (eds) A handbook of industrial ecology. Edward Elgar Publications, Cheltenham/Northampton, pp 3–15

    Google Scholar 

  • Lowe EA (1997) Creating by-product resource exchanges: strategies for eco-industrial parks. J Clean Prod 5(1–2):57–65

    Article  Google Scholar 

  • Möller A (2000) Grundlagen stoffstrombasierter Betrieblicher Umweltinformationssysteme. Projekt Verlag, Bochum (in German)

    Google Scholar 

  • Möller A (2004) Continuous simulation in material flow networks. In: Proceedings of the iEMSs 2004 “Complexity and Integrated Resource Management”, Osnabrueck

    Google Scholar 

  • Möller A (2005) Dynamic material flow analysis in the life cycle assessment tool chain. In: Geldermann J, Treitz M, Schollenberger H, Rentz O (eds) Challenges for industrial production. Universitätsverlag, Karlsruhe

    Google Scholar 

  • Reisig M (1985) Petri nets – an introduction. Springer, Berlin/Heidelberg/New York

    Book  Google Scholar 

  • Riebel P (1994) Core features of the ‘Einzelkosten- und Deckungsbeitragsrechnung’. Euro Account Rev 3(3):515–546

    Article  Google Scholar 

  • Taylor FW (1911) The principles of scientific management. Harper & Brothers Publications, New York/London

    Google Scholar 

  • UBA 2012 What matters (2012): annual report of the Federal Environment Agency. Available at: https://www.umweltbundesamt.de/sites/default/files/medien/publikation/long/4296.pdf

  • VillageReach (2014) http://villagereach.org/

  • Wäger PA, Lang DJ (2010) Seltene Metalle – Rohstoffe für Zukunftstechnologien. Available at: http://www.satw.ch/publikationen/satwinfo/SelteneMetalle.pdf

  • Wäger PA et al (2012) Towards a more sustainable use of scarce metals - a review of intervention options along the metals life cycle. GAIA 21(4):300–309

    Google Scholar 

  • Weidema B, Thrane M, Christensen P, Schmidt J, Loekke S (2008) Carbon footprint – a catalyst for life cycle assessment? J Ind Ecol 12(1):3–6

    Article  Google Scholar 

  • Westerberg AW, Piela PC (1994) Equational-based process modeling. Technical report. Department of Chemical Engineering and the Engineering Design Research Center - Carnegie Mellon University, Pittsburgh

    Google Scholar 

  • Westerberg AW, Hutchinson HP, Motard RL, Winter P (1979) Process flowsheeting. Cambridge University Press, London/New York/Melbourne

    Google Scholar 

  • Wiek A, Ness B, Brand FS, Schweizer-Ries P, Farioli F (2012) From complex systems analysis to transformational change: a comparative appraisal of sustainability science projects. Sustain Sci 7(Suppl 1):5–24

    Google Scholar 

  • Wolman A (1965) The metabolism of cities. Sci Am 213(3):179–190

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annika Weiser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

John, B., Möller, A., Weiser, A. (2016). Sustainable Development and Material Flows. In: Heinrichs, H., Martens, P., Michelsen, G., Wiek, A. (eds) Sustainability Science. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7242-6_18

Download citation

Publish with us

Policies and ethics